初三数学试题

2014-5-11 0:17:59 下载本试卷

            初三数学试题

一、选择题。(每题3分,共30分)

2、点P(—3,2)关于原点的对称点P的坐标是(   )

A(3—2)  B(2,3)  C (2,3) D(3,2)

3、方程2X—5X+3=0的根的情况是(   )

A有两个不相等的实数根。

B只有一个实数根。

C有两个相等的实数根

D没有实数根

4、方程2x—5x+3=0 的根是(   )

A x=2  B x= 2  C x=2 x= 2  D x= (1 x)

5、样本7,7,9,10,12,12,12,15的中位数和众数是(   )

A 7 ,12  B 10,12  C 12,12  D 11,12

5 直角三角形的两条直角边的长分别是一元二次方程x—5x+1=0 的两个根,则这个三角形的斜边长是(  )

A 24   B 23    C 23     D 2 6

6 下列各式中,与   相等的是(   )

7正六边形的边长为R,那么互相平行的两对边之间为(   )

A 2 3R  B 2R     C 3R     D

8 OO 的二条弦AB.CD 相交于圆内一点 P ,如果AO=6,BO=8,CO=12,则                  CD=(  )

 A 4    B 6      C 9     D 12

9 OO与OO的半径分别是3 cm 和5cm,圆心距OO=4 cm,那么两圆的位置关系是

 A 相交   B 内切    C 外切   D 内含

10、在 ABC中,AD是高, ABC的外接圆直径AE交BC于点G,则下列结论

1. AD=BD CE 2  BE=EG AE  3 AE AD=AB AC  4 AG EG=BG CG

其中正确的个数是(   )

 A 1   B 2     C 3     D 4

二、填空题(每题3分,共30分)

1 方程2x =3x 的根是________________.

2在实数范围内分解因式2X—4X—5=_____________________

3 函数        的自变量取值范围是____________________

4 抛物线y=--x—4x+2的对称轴为_____________________

5 对于函数y=    ,当x<0时,图象在第______象限

6 

7  ABC中,A=55,点O是 ABC的内心,则<BOC=________

8 已知OO的弦AB与CD相交于E,且CE:ED=1:3,

AE=10,BE=6,则OO的半径是___________

9已知扇形面积是60 cm ,扇形所在圆的半径是12 cm ,则扇形的圆心角的度数是_______

10 如图,OO与OO相切于点A,一条直线与两圆外切于点

B和C,已知OO的半径是3,OO的半径是5,则AB:BC

的值是___________

三、作图题。(6分)

 如图 ABC是一下角料,要从中截出一个圆,使其面积最大。请你在图中作出这个圆,不写作法,但保留作图痕迹。

四、 解答题。(共54分)

1  解方程组   x—3y=0   -----------1

         x +y =20   -----------2

2 列方程解应用题。

 一列客车已晚点6分钟,为正点到达目的地,现将速度每小时加快10千米,继续行驶

20千米可正点到达。求客车原来行驶的速度。

3 为了从甲、乙两名射击运动员中选拔一人参加市运动会,对他们进行测验。两人在

相同条件下各射靶10次,命中环数如下:

    甲:7 8  5 8 6  5 9 10  7 5

    乙:9 5  7 8 7  6 8 6  7 7 

试根据平均成绩和稳定性选出参赛人员。

4 在高2米,坡角为30的楼梯表面铺地毯,地毯

的长度至少需要多少米?

5 已知 y +2与 x —1成正比例,且当x=2时,y =7

1求x 与y 的函数关系式。

2求当x=4时,y 的值。

6 如图,点E是ABC的内心,AE交BC于点D,

交 ABC外接圆于点F,过点F的 ABC的外接圆

的切线交AB、AC延长线于M、N两点。

 求证:BC//MN

7 如图,等边 ABC面积为S,OO是它的外接圆,

点P是BC中点。

 1 试判断过点C所作OO的切线与直线AB是否相交,

并证明你的结论。

 2 设直线CP与AB相交于点D,过点B作BE l CD,

垂足为E,证明BE是OO的切线,并求 BDE的面

积。

            初三数学试题说明及参考答案

一、选择题。每小题3分,共30分。

 AAADC  CCBAB

二、填空题。每小题3分,共30分。

1、  =0,=—。2、      3         4         5      

6       7        8         9         10

三、作图题。6分。

 正确地作出 ABC的内切圆,并保留作图痕迹得6分。

1、  漏作半径扣1分。

2、  漏结论扣1分。

四、解答题。1—5题,每题6分;6题8分;7题10分。

1、  解:由1得:

  x=3y--------- 3

 把3代入2 得:

9Y=Y=20

  Y=+ 2

X=      X=

Y=      Y=      -----------6

2解:设客车的速度为Y千米/时,则              ----------------------1

                              -----------------------3

  即:X+10X—2000=0

    x=40    x=—50                  ----------------------4

经检验,x =40  x=—50都是原方程的根,但x=—50不适合题意,舍去。-----------5

  客车原来的速度是40千米/时。                ---------------------6

3、  说明:本题把统计初步知识 的考查与现代社会生活联系起来,避免了对该部分知识的抽象考查和脱离实际,体现了对学生应用意识的考查。

x= (7+8+5+8+6+5+9+10+7+5)=7

x=  (9+5+7+8+7+6+8+6+7+7)=7            ---------------------2

 

s=  (4+9+9+1+16+25+4—10·4)=2.8           ---------------------4

s=  (16+4+9+4+1+9+1+4+4—10·4)=1.2         ---------------------5

  s <s

  应选已参加市运动会。                    ----------------------6

4  说明:本试题考查的知识比较基础,但它设置了一个联系实际、贴近生活的新颖情境,立意于考查学生观察、分析、转换等灵活应用知识的能力。这种试题有利于激发学生对生活中的数学现象的好奇心,有利于培养学生应用数学的意识。

5、         y+2=k(x+1)

3k=9

   k=2

   y=3x+1

6、  说明:本题源于几何课本第三册124页习题,只是画出了内切圆,干扰了学生的视线。

7、说明:本题是一道“开放探究性”题目,所证结论首先需要学生经过观察、分析、综合,提出猜想,然后再进行推理、证明。在解决问题的过程中体现了一般定理、法则的教学过程,这实际上也正是数学发现和创造的基本思路。