中考数学代数总复习复习测试

2014-5-11 0:12:26 下载本试卷

         初三代数总复习

一、       填空题:

1.     一种细菌的半径约为0.000045米,用科学记数法表示为     米.

2.     的立方根是   的平方根是   

3.     如果a+2+=0,那么a、b的大小关系为a    b(填“>”“=”或“<”);

4.     计算:=      

5.    计算:+=      

6.   在实数范围内分解因式:ab2-2a=___    ______.

7.     计算:+=       

8.    不等式组的解集是____________。

9.     方程的解是__ ___ x=5_____________.

10.   观察下列等式,×2 = +2,×3 = +3,×4 = +4,×5 = +5

表示正整数,用关于的等式表示这个规律为_______   ____;

11. 在函数中,自变量x的取值范围是____________。

12. 如果反比例函数的图象经过点(1,-2),那么这个反比例函数的解析式为_________________。

13.   函数轴的交点是       ,与轴的交点是       ,与两坐标轴围成的三角形面积是     

14.   某地的电话月租费24元,通话费每分钟0.15元,则每月话费(元)与通话时间(分钟)之间的关系式是           ,某居民某月的电话费是38.7元,则通话时间是     分钟,若通话时间62分钟,则电话费为       元;

15.   函数的图像,在每一个象限内,的增大而   

16.   把函数的图象向右平移3个单位,再向下平移2个单位,得到的二次函数解析式是        

17.  把二次函数化成的形式是        ,顶点坐标是         ,对称轴是         

18.  1,2,3,的平均数是3,则3,6,的平均数是     

19.   2004年5月份,某市市区一周空气质量报告中某项污染指数的数据是:31 35  31 34 30  32 31 这组数据的中位数是          

20.   为了调查某校初中三年级240名学生的身高情况,从中抽测了40名学生的身高,在这个问题中总体是    ,个体是      ,样本是      

21.   点P()关于轴的对称点的坐标是       ,关于轴的对称点的坐标是       ,关于原点的对称点的坐标是       

22.   若点 在第一象限,则的取值范围是           ;

23.   已知,化简的结果是         

24.   方程的根是,则可分解为           ;

25.   方程的解是

26.   方程  的一根是,则它的另一根是      

27.   已知时,分式无意义,时此分式值为0,则

28.   若方程组的解是,则a=_________,b=_______;

29.  10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字2)=   0.1  ,P(摸到奇数)=  0.5     ;

30.   甲、乙两人进行射击比赛,在相同条件下各射击 10 次他们的平均成绩均为 7 环10 次射击成绩的方差分别是:.成绩较为稳定的是____乙______.(填“甲”或“乙” )

二、选择题:

31、在实数π,2,,tan45°中,有理数的个数是   (  )

A、 2个   B、3个    C、  4个   D、5个

32、下列二次根式中与是同类二次根式的是 (  )
   A、    B、    C、    D、

33、在下列函数中,正比例函数是 (  )

 A      B    C     D 

34、李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速前进,结果准时到校,在课堂上,李老师请学生画出:自行车行进路程S(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的示意图如下,你认为正确的是                (  )


           B

35、正比例函数和反比例函数在同一坐标系内的图象为       

(  )

A             B             C               D

36、二次函数,则它的图象必经过点        (  )

A ()  B ()   C ()  D (

37、不等式组的整数解的个数是  (  )                

A  1    B  2    C  3   D  4

38、在同一坐标系中,作出函数的图象,只可能是   (  )

39、若关于的方程有两个相等的实根,则a的值是      (  )

A  -4    B  4    C  4或-4   D  2

40、某中学为了了解初中三年级数学的学习情况,在全校学生中抽取了50名学生进行测试(成绩均为整数,满分为100分),将50名学生的数学成绩进行整理,分成5组画出的频率分布直方图如图所示,已知从左至右4个小组的频率分别是0.06,0.08,0.20,0.28,那么这次测试学生成绩为优秀的有(分数大于或等于80分为优秀)。 (  )                

A  30人  B  31人  C   33人  D  34人

41、某学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?若设原价每瓶元,则可列出方程为     (  )

A       B 

C       D 

42、在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分拼成一个矩形(如图2),根据两个图形中阴影部分的面积相等,可以验证(  C  )

(A)

(B)

(C)

(D)

三、解答题:

43、计算: ;    

 44、计算:

      

45、解不等式组

46、抛物线的对称轴是,且过(4,-4)、(-1,2),求此抛物线的解析式;

47、为了保护学生的视力,课桌椅的高度是按一定的关系配套设计的。研究表明:假设课桌的高度为cm,椅子的高度(不含靠背)为cm,则应是的一次函数,右边的表中给出两套符合条件的桌椅的高度:

         

第一套

 第二套

椅子高度(cm)

 40.0

  37.0

桌子高度(cm)

 75.0

  70.2

(1)请确定的函数关系式;

(2)现有一把高42.0cm的椅子和一张高78.2cm的课桌,它们是否配套?请通过计算说明理由。

48、有一个抛物线形拱桥,其最大高度为16m,跨度为40m,现把它的示意图放在平面直角坐标系中如 图(4),求抛物线的解析式

 

 

 

49、某工厂第一季度生产甲、乙两种机器共480台.改进生产技术后,计划第二季度生产这两种机器共554 台,其中甲种机器产量要比第一季度增产10 % ,乙种机器产量要比第一季度增产20 % .该厂第一季度生产甲、乙两种机器各多少台?

50、为节约用电,某学校于本学期初制定了详细的用电计划。如果实际每天比计划多用2度电,那么本学期的用电量将会超过2530度;如果实际每天比计划节约2度电,那么本学期用电量将会不超过2200度电。若本学期的在校时间按110天计算,那么学校每天用电量应控制在什么范围内?

51、某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:

每人销售件数

1800

510

250

210

150

120

人数

1

1

3

5

5

2

(1)求这15位营销人员该月销售量的平均数、中位数和众数;

(2)假设销售部负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如果不合理,请你制定一个较合理的销售定额,并说明理由;

52、小刚为书房买灯,现有两种灯可供选择,其中一种是9瓦(0.009千瓦)的节能灯,售价49元/盏;另一种是40瓦(0.04千瓦)的白炽灯,售价18元/盏。假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,并已知小刚家所在地的电价是每千瓦时0.5元。

(1)设照明时间是小时,设一盏节能灯的费用和一盏白炽灯的费用,求出之间的函数关系式(注:费用=灯的售价+电费)

(2)小刚想在这两种灯中选一盏。

①当照明时间是多少时,使用两种灯的费用一样多?

②照明时间是在什么范围内,选用白炽灯的费用最低?

③照明时间是在什么范围内,选用节能灯的费用最低?

(3)小刚想在这两种灯中选购两盏。

假定照明时间是3000小时,使用寿命就是2800小时。请你帮他设计一种费用最低的选灯方案,并说明理由。

答案:

一、填空题

1)、4.5×10-5  2)、-2,  3)、<   4)、2   5)、0 

 6)、a(b-)(b+)  7)、1   8)、   9)、x=5 

 10)、

11)、  12)、  13)、  14)、y=0.15x+24,(、98,3.33 

15)、增大  16)、y=2(x-3)2-2  17)、y=(x-2)2+4 18)、5 19)、31

20)、某校初中三年级240名学生的身高,一名学生的身高,某校初中三年级40名学生的身高

21)、(-1,-2)(1,2)(1,-2)   22)、  23)、1   24)、

25)、  26)、-1,2  27)、6   28)、-5,3  29)、  30、乙

二、选择题

31、B  32、D  33、A 34、C 35、B 36、C 37、C 38、B 39、B

40、C 41、B 42、C 

三、解答题

43)、4   44)、  45)、    46)、

47)、(1)y=1.6x+11  (2)当高为4.20cm时,y=42×1.6+11=78.2 它们是配套的

48)、依题意得:A(20,16)  B(0,40)  设   k=0.06     

49)、解:设第一季度生产甲机器x台,乙机器y台

      解得:

答:甲机器220台,乙机器260台。

50、解:设每天用电量为x度。

51、(1)平均数:340  中位数:210   众数:210,150  

(2)不合理;因为销售额等达到320件的人只有2人,还有13人不能达到。可以把销售额定为210件。因为中位数为210,众数为210,说明有大多数的人可以达到。

52、1) 

2)①由,解得②由,解得③由,解得

3)如果选用两盏节能灯,则费用是111.5元;如果选用两盏白炽灯,则费用是96元;如果选用一盏节能灯和一盏白炽灯,由(2)可知,当照明时间大于2000小时时,用节能灯比白炽灯费用低,所以节能灯用完2800小时时,费用最低,费用是83.6元。

因此,因选一盏灯,且节能灯使用2800小时,白炽灯使用200小时费用最低。