配几何画板测试题

2014-5-11 0:12:27 下载本试卷

配几何画板测试题

25、(12分)已知Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE,连结EC,取EC中点M,连结DM和BM,

(1)若点D在边AC上,点E在边AB上且与点B不重合,如图①,求证:BM=DM且BM⊥DM;

(2)如图①中的△ADE绕点A逆时针转小于45°的角,如图②,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明。

郴州

27.如图,矩形ABCD中,AB=3,BC=4,将矩形ABCD沿对角线AC平移,平移后的矩形为EFGH(A、E、C、G始终在同一条直线上),当点E与C重合时停止移动.平移中EFBC交于点NGHBC的延长线交于点MEHDC交于点PFGDC的延长线交于点Q.设S表示矩形PCMH的面积,表示矩形NFQC的面积.

(1) S相等吗?请说明理由.

(2)设AEx,写出S和x之间的函数关系式,并求出x取何值时S有最大值,最大值是多少?

(3)如图11,连结BE,当AE为何值时,是等腰三角形.


福州

如图①,以矩形ABCD的顶点A为原点,AD所在的直线为x轴,AB所在的直线为y轴,建立平面直角坐标系。点D的坐标为(80),点B的坐标为(06),点F在对角线AC上运动(点F不与点AC重合),过点F分别作x轴、y轴的垂线,垂足为GE。设四边形BCFE的面积为S1,四边形CDGF的面积为S2AFG的面积为S3

(1)试判断S1S2的关系,并加以证明;

(2)S3S213时,求点F的坐标;

(3)如图②,在(2)的条件下,把AEF沿对角线AC所在的直线平移,得到AEF,且AF两点始终在直线AC上。是否存在这样的点E,使点Ex轴的距离与到y轴的距离比是54,若存在,请求出点E的坐标;若不存在,请说明理由。

河北

在△ABC中,AB=ACCGBABA的延长线于点G.一等腰直角三角尺按如图15-1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B

(1)在图15-1中请你通过观察、测量BFCG

长度,猜想并写出BFCG满足的数量关系,

然后证明你的猜想;

(2)当三角尺沿AC方向平移到图15-2所示的位置时,

一条直角边仍与AC边在同一直线上,另一条

直角边交BC边于点D,过点DDEBA

E.此时请你通过观察、测量DEDFCG

的长度,猜想并写出DEDFCG之间满足

的数量关系,然后证明你的猜想;

(3)当三角尺在(2)的基础上沿AC方向继续平

移到图15-3所示的位置(点F在线段AC上,

且点F与点C不重合)时,(2)中的猜想是否

仍然成立?(不用说明理由)

宜昌25.如图1,点A是直线ykxk0,且k为常数)上一动点,以A为顶点的抛物线y(xh)2m交直线y=kx于另一点E,交 y 轴于点F,抛物线的对称轴交x轴于点B,交直线EF于点C.(点A,E,F两两不重合)

(1)请写出hm之间的关系;(用含的k式子表示)

(2)当点A运动到使EFx轴平行时(如图2),求线段ACOF的比值;

(3)当点A运动到使点F的位置最低时(如图3),求线段ACOF的比值.


                               

(第25题图1)

(第25题图2)

(第25题图3)

连云港

28.(本小题满分14分)如图,在直角坐标系中,矩形的顶点与坐标原点重合,顶点在坐标轴上,.动点从点出发,以的速度沿轴匀速向点运动,到达点即停止.设点运动的时间为

(1)过点作对角线的垂线,垂足为点.求的长与时间的函数关系式,并写出自变量的取值范围;

(2)在点运动过程中,当点关于直线的对称点恰好落在对角线上时,求此时直线的函数解析式;

(3)探索:以三点为顶点的的面积能否达到矩形面积的?请说明理由.

 

2007年福建省宁德市26.(本题满分14分)

已知:矩形纸片中,厘米,厘米,点上,且厘米,点边上一动点.按如下操作:

步骤一,折叠纸片,使点与点重合,展开纸片得折痕(如图1所示);

步骤二,过点,交所在的直线于点,连接(如图2所示)

(1)无论点边上任何位置,都有     (填“”、“”、“”号);

(2)如图3所示,将纸片放在直角坐标系中,按上述步骤一、二进行操作:

①当点点时,交于点点的坐标是(         );

②当厘米时,交于点点的坐标是(         );

③当厘米时,在图3中画出(不要求写画法),并求出的交点的坐标;

(3)点在运动过程,形成一系列的交点观察、猜想:众多的交点形成的图象是什么?并直接写出该图象的函数表达式.


26.(1).····································································································· 2分

(2)①;②.······························································································· 6分

③画图,如图所示.······································································································ 8分

解:方法一:设交于点

中,

.·············································································································· 11分

方法二:过点,垂足为,则四边形是矩形.

,则

中,

.·············································································································· 11分

(3)这些点形成的图象是一段抛物线.······································································ 12分

函数关系式:.····································································· 14分

说明:若考生的解答:图象是抛物线,函数关系式:均不扣分.

2007年福建省三明市26.(本小题满分12分)

如图①,②,在平面直角坐标系中,点的坐标为(4,0),以点为圆心,4为半径的圆与轴交于两点,为弦,轴上的一动点,连结

(1)求的度数;(2分)

(2)如图①,当相切时,求的长;(3分)

(3)如图②,当点在直径上时,的延长线与相交于点,问为何值时,是等腰三角形?(7分)

26.解:(1)∵

是等边三角形.      

.   ··············································· 2分

(2)∵CP相切,

.   

又∵(4,0),∴.∴

.  ································ 5分

(3)①过点,垂足为,延长

是半径, ∴,∴

是等腰三角形.···························································································· 6分

又∵是等边三角形,∴=2 .··························································· 7分

②解法一:过,垂足为,延长轴交于

是圆心, ∴的垂直平分线. ∴

是等腰三角形, ························································································· 8分

过点轴于

中,∵

.∴点的坐标(4+).

中,∵

.∴点坐标(2,). ································································· 10分

设直线的关系式为:,则有

   解得:

时,

 ∴. ································································································· 12分

解法二: 过A,垂足为,延长轴交于

是圆心, ∴的垂直平分线. ∴

是等腰三角形.··························································································· 8分

,∴

平分,∴

是等边三角形,, ∴

是等腰直角三角形.···················································································· 10分

.···················································································· 12分

2007年河池市26. (本小题满分12分)

如图12, 四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4). 点出发以每秒2个单位长度的速度向运动;点同时出发,以每秒1个单位长度的速度向运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点垂直轴于点,连结ACNPQ,连结MQ

(1)点    (填MN)能到达终点;

(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;

(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标,若不存在,说明理由.


2007年河池市26. 解:(1)点 M  ································································· 1分

(2)经过t秒时,

==

    ································································· 2分

 ·············································································································· 3分

 ············································································· 5分

∴当时,S的值最大.  ································································· 6分

(3)存在.   ········································································································· 7分

设经过t秒时,NB=tOM=2t

==     ··············································································· 8分

①若,则是等腰Rt△底边上的高

是底边的中线   ∴

∴点的坐标为(1,0)   ·················································································· 10分

②若,此时重合

∴点的坐标为(2,0)   ·················································································· 12分

湖北省荆门市2007年28.(本小题满分12分)

如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点POA边上的动点(与点OA不重合).现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PDPF重合.

(1)设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;

(2)如图2,若翻折后点D落在BC边上,求过点PBE的抛物线的函数关系式;

(3)在(2)的情况下,在该抛物线上是否存在点Q,使△PEQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.

湖北省荆门市2007年28.解:(1)由已知PB平分∠APDPE平分∠OPF,且PDPF重合,则∠BPE=90°.∴∠OPE+∠APB=90°.又∠APB+∠ABP=90°,∴∠OPE=∠PBA

∴Rt△POE∽Rt△BPA.……………………………………………………………………2分

.即.∴y=(0<x<4).

且当x=2时,y有最大值.………………………………………………………………4分

(2)由已知,△PAB、△POE均为等腰三角形,可得P(1,0),E(0,1),B(4,3).……6分

设过此三点的抛物线为y=ax2bxc,则

y=.……………………………………………………………………………8分

(3)由(2)知∠EPB=90°,即点Q与点B重合时满足条件.………………………………9分

直线PBy=x-1,与y轴交于点(0,-1).

PB向上平移2个单位则过点E(0,1),

∴该直线为y=x+1.………………………………………………………………………10分

∴Q(5,6).

故该抛物线上存在两点Q(4,3)、(5,6)满足条件.……………………………………12分

泰州市200729.如图①,中,.它的顶点的坐标为,顶点的坐标为,点从点出发,沿的方向匀速运动,同时点从点出发,沿轴正方向以相同速度运动,当点到达点时,两点同时停止运动,设运动的时间为秒.

(1)求的度数.

(2)当点上运动时,的面积(平方单位)与时间(秒)之间的函数图象为抛物线的一部分,(如图②),求点的运动速度.

(3)求(2)中面积与时间之间的函数关系式及面积取最大值时点的坐标.

(4)如果点保持(2)中的速度不变,那么点沿边运动时,的大小随着时间的增大而增大;沿着边运动时,的大小随着时间的增大而减小,当点沿这两边运动时,使的点有几个?请说明理由.

九、(本题满分14分)

(1).··································································································· 2分

(2)点的运动速度为2个单位/秒.·········································································· 4分

(3)

································································································ 6分

时,有最大值为

此时.····································································································· 9分

(4)当点沿这两边运动时,的点有2个.····································· 11分

①当点与点重合时,

当点运动到与点重合时,的长是12单位长度,

轴于点,作轴于点

得:

所以,从而

所以当点边上运动时,的点有1个.··································· 13分

②同理当点边上运动时,可算得

而构成直角时交轴于

所以,从而的点也有1个.

所以当点沿这两边运动时,的点有2个.······································· 14分

无锡市2007年28.(本小题满分10分)

如图,平面上一点从点出发,沿射线方向以每秒1个单位长度的速度作匀速运动,在运动过程中,以为对角线的矩形的边长;过点且垂直于射线的直线与点同时出发,且与点沿相同的方向、以相同的速度运动.

(1)在点运动过程中,试判断轴的位置关系,并说明理由.

(2)设点与直线都运动了秒,求此时的矩形与直线在运动过程中所扫过的区域的重叠部分的面积(用含的代数式表示).

解:(1)轴.···························· 1分

理由:中,.····· 2分

于点,交轴于点矩形的对角线互相平分且相等,则

,过点轴于,则轴.······················· 3分

(2)设在运动过程中与射线交于点,过点且垂直于射线的直线交于点,过点且垂直于射线的直线交于点,则

······································ 4分

①当,即时,.·············· 6分

②当,即时,设直线,交,则

.··········· 8分

③当,即时,

 

  ………………………………………………10分

扬州市200726.(本题满分14分)

如图,矩形中,厘米,厘米().动点同时从点出发,分别沿运动,速度是厘米/秒.过作直线垂直于,分别交.当点到达终点时,点也随之停止运动.设运动时间为秒.

(1)若厘米,秒,则______厘米;

(2)若厘米,求时间,使,并求出它们的相似比;

(3)若在运动过程中,存在某时刻使梯形与梯形的面积相等,求的取值范围;

(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形,梯形,梯形的面积都相等?若存在,求的值;若不存在,请说明理由.

26.(1)

(2),使,相似比为

(3)

当梯形与梯形的面积相等,即

化简得

,则

(4)时,梯形与梯形的面积相等

梯形的面积与梯形的面积相等即可,则

,把代入,解之得,所以

所以,存在,当时梯形与梯形的面积、梯形的面积相等.

江西省南昌市200725.实验与探究

(1)在图1,2,3中,给出平行四边形的顶点的坐标(如图所示),写出图1,2,3中的顶点的坐标,它们分别是            

(2)在图4中,给出平行四边形的顶点的坐标(如图所示),求出顶点的坐标(点坐标用含的代数式表示);

归纳与发现

(3)通过对图1,2,3,4的观察和顶点的坐标的探究,你会发现:无论平行四边形处于直角坐标系中哪个位置,当其顶点坐标为(如图4)时,则四个顶点的横坐标之间的等量关系为      ;纵坐标之间的等量关系为      (不必证明);

运用与推广

(4)在同一直角坐标系中有抛物线和三个点(其中).问当为何值时,该抛物线上存在点,使得以为顶点的四边形是平行四边形?并求出所有符合条件的点坐标.

25.解:(1).····················································· 2分

(2)分别过点轴的垂线,垂足分别为

分别过于点

在平行四边形中,,又

.·································································································· 5分

.由,得

,得.································ 7分

(此问解法多种,可参照评分)

(3).························· 9分

(4)若为平行四边形的对角线,由(3)可得.要使在抛物线上,

则有,即

(舍去),.此时.································································ 10分

为平行四边形的对角线,由(3)可得,同理可得,此时

为平行四边形的对角线,由(3)可得,同理可得,此时

综上所述,当时,抛物线上存在点,使得以为顶点的四边形是平行四边形.

符合条件的点有. 12分

乐山市200728.如图(16),抛物线的图象与轴交于两点,与轴交于点,其中点的坐标为;直线与抛物线交于点,与轴交于点,且

(1)用表示点的坐标;

(2)求实数的取值范围;

(3)请问的面积是否有最大值?

若有,求出这个最大值;若没有,请说明理由.

28.解(1)抛物线

·········································································································· 1分

在抛物线上,

的坐标为.·················································································· 3分

(2)由(1)得

.······························································································· 6分

(3)的面积有最大值,············································································ 7分

的对称轴为

的坐标为,··················································································· 8分

由(1)得

,······························································································ 10分

的对称轴是

时,取最大值,

其最大值为.  12分