中考数学辅导之—反比例函数及圆相关公式

2014-5-11 0:12:29 下载本试卷

中考数学辅导之—反比例函数及圆相关公式

反比例函数.圆周长、弧长公式及圆的面积和扇形、弓形面积.

一、教学目的:

1.掌握反比例函数的定义、图象和性质.

  2.掌握圆周长、弧长公式及圆、扇形、弓形的面积公式.并能熟练的进行公式变形、正确的计算.

二、基础知识及说明:

  1.函数叫反比例函数(或).其图象是双曲线,所以我们也叫双曲线.当时,图象在一、三象限,在每个象限内,的增大而减小,当,双曲线在二、四象限, 在每个象限内,的增大而增大.

  2.设圆的半径是,则圆的周长.若一条弧所对的圆心角是,半径是R,则弧长公式是.(注意,求弧长有①圆心角的度数②半径的长两个条件),注意公式的变形.已知弧长求圆心角.已知弧长求半径R=.

  3.已知圆的半径R,则圆的面积是S=R2.扇形的面积是,第一个公式是利用圆心角的度数和半径R求得的.第二个公式是利用扇形的弧长和半径R求得的,要注意根据已知条件选用恰当的公式.

  4.弓形面积,若一个弓形小于半圆则S弓形=S扇形-S;若一个弓形大于半圆,则S弓形=S扇形+S.

三、练习:

1.填空题:

⑴弧AB的长是10cm,半径是10cm,则AB所对的圆心角是____度, S扇形AOB=____cm2.

⑵两个同心圆,若小圆的切线被大圆截取的部分为8cm,则两圆围成的环形面积是____cm2.

⑶扇形的圆心角是120°,弧长是4,则扇形的面积是____.

⑷弓形的弧所对的圆心角是120°,弓形的弦长是,则该弓形的面积是____.

⑸如图:两个同心圆被两条半径截得    C

的AB长是cm. CD的长是cm.     A    B  D

 AC=8cm,则S阴影=____cm2.         O  

⑹已知扇形的半径是它内切圆的半径的3倍,则扇形的面积与内切圆的面积之比是____.

⑺已知,的算术平方根成正比例,成反比例,且当,则间的函数关系式是____.

⑻已知与反比例函数的图象的两个交点的横坐标分别是,则这个一次函数的解析式是____.

⑼反比例函数的图象经过(-3,6)点,则这个函数的解析式是____.

⑽如图:已知⊙O1和⊙O2的半径分别是6cm和2cm,⊙O1和⊙O2外切于P.AB是两圆的外公切线,则S阴影=____cm2.

⑾已知反比例函数的图象经过点A(),已知直线也经过点A与轴相交于点B,且S△AOB=6,则直线的解析式是____.


                  P

   

              O1    O2

                    B

     

                A

⑿已知反比例函数的图象在二、四象限,则的值是____.

⒀如果一个扇形的半径为一个圆的半径的2倍,且扇形的面积与圆的面积相等,那么这个扇形的中心角是____度.

⒁弓形的高为1cm,弦长为,则弓形的面积是____.

四、练习答案:

 ⑴ 

 ⑵(提示:S环=S大圆-S小圆====16)


            

             R  r

 ⑶ 

 ⑷(提示:∠AOD=60° AD  R S扇形= OD= S=)

    

         A    D  

               B

            O

 ⑸分析:S阴影=S大扇-S小扇,而由S扇形=,必须求R.但在此图形中,两扇形的半径不同,面积不同,但两个扇形的圆心角相同,利用.再利用 和圆心角相同即,解得: ∴S大扇=, S小扇=

∴S阴影=.此题还可记住书中P212中第11题第②小题中公式S阴影=.

 ⑹此题的图

         A    B

            D

          O

设小圆半径为r,扇形的半径3r,圆⊙与扇形成内切 ∴O=2r OD=r

∴∠OD=30°, ∠AOB=60°S扇形=.

 ⑺ ⑻  ⑼

 ⑽提示:连结O1O2,O1A,O2B,过O2作O2D⊥O1A,则O1O2=8cm,O1D=4cm,

则∠O1O2D=30°,∠AO1O2=60°,∠O1O2B=120°,S扇形=6,S小扇=,S梯形=16,

S阴影=16-.

 ⑾ ⑿2 ⒀90°  ⒁