中考模拟考试数学试卷(1)

2014-5-11 0:12:30 下载本试卷

中考模拟考试数学试卷(1

题号

总分

得分

文本框: 得分	评卷人
	

一、填空题 (本大题共6小题,每小题3分,共18分)

1.=    

2.函数y=的自变量取值范围是    

3.观察下列各式:×2=+2,×3=+3,×4=+4,×5=+5…想一想,什么样的两数之积等于这两数之和?设n表示正整数,用关于n的等式表示这个规律为           

4.如果反比例函数y=的图象经过点P(-3,1)那么k=    

5.如果一个角的补角是120°,那么这个角的余角是    

6.如图:ABCD,直线EF分别交AB、CDE、FEG平分∠BEF,若∠1=72°,则∠1=72°,则∠2=    

二、选择题文本框: 得分	评卷人
	

(本大题共8个小题,每小题4分,满分32分)

7.下列计算正确的是(  )

A.(-4x2)(2x2+3x-1)=-8x4-12x2-4x                 B.(x+y)(x2+y2)=x3+y3

C.(-4a-1)(4a-1)=1-16a2                        D.(x-2y)2=x2-2xy+4y2

8.把x2-1+2xy+y2的分解因式的结果是(  )

A.(x+1)(x-1)+y(2x+y)                         B.(x+y+1)(x-y-1)

C.(x-y+1)(x-y-1)                                 D.(x+y+1)(x+y-1)

9.已知关于x的方程x2-2x+k=0有实数根,则k的取值范围是(  )

A.k<1       B.k≤1           C.k≤-1          D.k≥1

10.某电视台举办的通俗歌曲比赛上,六位评委给1号选手的评分如下:90 96 91 96 95 94这组数据的众数和中位数分别是(  )

A.94.5,95    B.95,95         C.96,94.5       D.2,96

11.面积为2的△ABC,一边长为x,这边上的高为y,则yx的变化规律用图象表示大致是(  )

A        B         C        D

12.有如下结论(1)有两边及一角对应相等的两个三角形全等;(2)菱形既是轴对称图形又是中心对称图形;(3)对角线相等的四边形是矩形;(4)平分弦的直径垂直于弦,并且平分弦所对的两条弧;(5)两圆的公切线最多有4条,其中正确结论的个数为(  )

A.1个       B.2个           C.3个           D.4个

13.已知:如图梯形ABCD中,AD∥BCAB=DCACBD相交于点O,那么图中全等三角形共有(  )对.

A.1对       B.2对           C.3对           D.4对

        

14.如图四边形ABCD内接于⊙O,若∠BOD=100°,则∠DAB=(  )

A.50°       B.80°           C.100°          D.130°

三、解答题(本大题共7个小题,共70分)

文本框: 得分	评卷人

15.(本小题6分)计算:+-4

文本框: 得分	评卷人

16.(本小题7分)解方程: -8x2+12=0

文本框: 得分	评卷人

17.(6分)某中学团委到位于A市南偏东60°方向50海里的B基地慰问驻车,然后乘船前往位于B基地正西方向的C哨所看望值班战士,C哨所位于A市的南偏西43°方向,求CA的距离(精确到1海里,以下数据供选用sin43°≈0.68,cos43°≈0.73)

文本框: 得分	评卷人

18.(4分)平原上有A、B、C、D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其它因素,请你画图确定蓄水池H点的位置,使它与四个村庄的距离之和最小.(不作证明)

文本框: 得分	评卷人

19.(本小题5分)阅读材料,解答问题:

如图,在锐角△ABC中,BC=a,CA=b,AB=c,△ABC的外接圆的半径为R,则===2R

证明:连结CO并延长交⊙O的直径,∴∠DBC=90°,

在Rt△DBC中,

∵sin D==,

∴sin A=sin D= ∴=2R

同理=2R,=2R

前面的阅读材料中略去=2R,=2R的证明过程,请你把B =2R的证明过程补写出来.

文本框: 得分	评卷人

20.(12分)某图书馆开展两种方式的租书业务,一种是使用会员卡,另一种是使用租书卡,使用这两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如下图所示.

(1)分别求出用租书卡和会员卡租书的金额y(元)与租书时间x(天)之间的函数关系式.

(2)两种租书方式每天租书的收费分别是多少元?(x≤100)

文本框: 得分	评卷人

21.(8分)某校师生去外地参加夏令营活动,车站提出两种车票价格的优惠方案供学校选择.第一种方案是教师按原价付款,学生按原价的78%付款;第二种方案是师生都按原价的80%付款;该校有5名教师参加这项活动,试根据夏令营的学生人数选择购票付款的最佳方案?

文本框: 得分	评卷人

22.(8分)初三(几何)课本中有这样的一道习题,若⊙O1与⊙O2外切于点A,BC是两圆的一条外公切线,B、C为切点,则ABAC

(1)若⊙O1和⊙O2外离,BC为两圆的外公切线,B,C为切点,连心线O1O2分别交⊙O1,⊙O2M,N,设BMCN的延长线交于A,试问ABAC是否垂直?证明你的结论.

(2)若⊙O1与⊙O2相交,ABAC垂直吗?

文本框: 得分	评卷人

23.(14分)函数y=-x-12的图象分别交x轴,y轴于A,C两点,

(1)求出AC两点的坐标.

(2)在x轴上找出点B,使△ACB~AOC若抛物线经过A、B、C三点,求出抛物线的解析式.

(3)在(2)的条件下,设动点P、Q分别从A、B两点同时出发,以相同的速度沿AC、BAC、A运动,连结PQ,设AP=m,是否存在m值,使以A、P、Q为顶点的三角形与△ABC相似,若存在,求出所有的m值;若不存在,请说明理由.

2007年山西省中考模拟考试数学试卷(一)参考答案

一、1.  2.x≥2  3.(n+1)=+(n+1) 4.-3 5.30°  6.54°

二、7.C 8.D 9.B 10.C 11.C 12.B 13.C 14.D

三、15.解:原式=3+3-2···················································· 4分

=3······································································· 6分

16.解:设2x2-3=y,则原方程变形为-4y=0·································· 1分

整理得1-4y2=0

解这个方程得,y1=,y2=-························································· 3分

y1=时,2x2-3=,解得:x········································ 4分

y2=-时,2x2-3=-,解得:x····································· 5分

经检验知,它们都是原方程的根.

所以原方程的根是:xx······································ 7分

17.解:过AADBCD,···················································· 1分

在Rt△ADB中,∠DAB=60°,AB=50海里,AD=AB cos 60°=25(海里) 

····································································································· 3分

在Rt△ADC中,cos43°=AC=≈34(海里)·············· 5分

答:CA的距离约是34海里.

18.作法:连结ACBD交点为H点,则H点即为所求的点.········ 4分

19.连结BO并延长交⊙OE,连结EA,则∠ACB=∠E··············· 1分

BE是⊙O的直径,

∴∠BAE=90°················································································ 2分

在Rt△ABE中,sinE==····················································· 3分

∴sin∠ACB=sinE=···································································· 4分

=2R·············································································· 5分

20.解:(1)租书卡:设y=kx························································· 1分

观察图象知,当x=100时,y=50,

∴100k=50,解得k=  ∴y=x·················································· 3分

用会员卡时,设y=kx+b··································································· 4分

∵(0,20),(100,50)在直线y=kx+b上,

····································· 6分

y=x+20

(2)用租书卡的方式租书,每天租书的收费为50÷100=0.5(元)··· 9分

用会员卡的方式租书,每天租书的收费为(50-20)÷100=0.3(元)

······································································································· 11分

答:略.··························································································· 12分

21.解:设参加夏令营活动的学生x人,每张车票的原价为a元,按第一种方案购票应付款y1元,按第二种方案购票应付款y2元,依题意得:······································································· 1分

y1=5a+a×78%·x  y2=(x+5)·a·80%············································ 4分

(1)当y2y1时,(x+5)·a·80% >5a+a×78%·x 解得x>50··· 5分

(2)当y2=y1时,(x+5)·a·80%=5a+a×78%·x  解得x=50·········· 6分

(3)当y2y1时,(x+5)·a·80%<5a+a×78%x 解得x<50········· 7分

答:当学生多于50人时,按第一种方案,当学生等于50人时,两种方案都可以,当学生少于50人时,按第二种方案.·············································································································· 8分

22.解:(1)猜想:ABAC··························································· 1分

证明:分别连结O1BO2C,··························································· 2分

O1BBC O2CBC,从而O1BO2C········································ 4分

∴∠BO1O2+∠CO2O=180°····························································· 5分

∵∠ABC+∠ACB=BO1O2+CO2O1=90°····························· 6分

∴∠BAC=90°即ABAC······························································· 7分

(2)亦有ABAC,证明与(1)类似,略.···································· 8分

23.(1)A(-16,0) C(0,-12)················································· 2分

(2)过CCBAC,交x轴于点B,显然,点B为所求,··········· 3分

OC2=OA×OB 此时OB=9,可求得B(9,0)····························· 5分

此时经过ABC三点的抛物线的解析式为:

y=x2+x-12·············································································· 8分

(3)当PQBC时,△APQ ~△ACB·············································· 9分

=·················································································· 10分

=解得m=··························································· 11分

PQAB时,△APQ ~△ACB······················································ 12分

得:=··············································································· 13分

= 解得m=························································ 14分