2006年九年级毕业模拟考试
数 学 科 试 卷
时间:120分钟 满分:100分 超量总分:120分
〔卷首提示语〕
亲爱的同学,这份将再次记录你的自信、沉着、智慧和收获. 我们一直投给你信任的
目光.
这是一份超量给题的试卷,请认真审题,看清要求,仔细答题. 凡提示选做的题,可选做或超量答题。
题 号 | 一 | 二 | 三 | 总 分 | |||||||
(1~12) | (13~20) | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | ||
得 分 | |||||||||||
评卷人 |
|
作答,多答加分。即满分20分,超量分4分)
在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.
题 号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
答 案 |
1.3的相反数是
A.-3 B. C. D.3
2.观察面图案,在A、B、C、D四幅图案中,能通过图案(1)的平移得到的是
3. 粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11 000 000吨,用科学记数法应记为
A.11×106吨 B.1.1×107吨 C.11×107吨 D.1.1×108吨
4. 把分式方程的两边同时乘以(x-2), 约去分母,得
A.1-(1-x)=1 B.1+(1-x)=1 C.1-(1-x)=x-2 D.1+(1-x)=x-2
5. 如图,ABCD中,对角线AC和BD相交于点O,如果AC=12、BD=10、AB=m,那么m的取什范围是
A.1<m<11 B.2<m<22
C.10<m<12 D.5<m<6
6. 函数中,自变量x的取值范围是
A.x>3 B.x≥3 C.x>-3 D.x≥-3
7. 从一幅扑克牌中抽出5张红桃,4张梅花,3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事情
A.可能发生 B.不可能发生 C.很可能发生 D.必然发生
8. 下面的平面图形中,是正方体的平面展开图的是
9. 在匀速运动中,路程s(千米)一定时,速度v(千米/时)关于时间t(小时)的函数关系的大致图象是
10. 下表是两个商场1至6月份销售“椰树牌天然椰子汁”的情况(单位:箱)
1月 | 2月 | 3月 | 4月 | 5月 | 6月 | |
甲商场 | 450 | 440 | 480 | 420 | 576 | 550 |
乙商场 | 480 | 440 | 470 | 490 | 520 | 516 |
根据以上信息可知
A.甲比乙的月平均销售量大 B.甲比乙的月平均销售量小
C.甲比乙的销售稳定 D.乙比甲的销售稳定
11. 第五次全国人口普查资料显示,2000年我省总人口为786.5万,题图中表示我省2000年接受初中教育这一类别的数据丢失了,那么,结合图中的信息,可推知2000年我省接受初中教育的人数为
A. 24.94万 B. 255.69万 C. 270.64万 D. 137.21万
12. 如图,在△ABC中,∠C=90°,AC=8cm, AB的垂直平分线MN交AC于D,连结BD,
若,则BC的长是
A.4cm B.6cm C.8cm D.10cm
|
作答,多答加分。即满分21分,超量3分)
|
14. 某商场4月份营业额为x万元,5月份营业额比4月份多10万元. 如果该市场第二季度的营业额为4x万元,那么6月份的营业额为 万元,这个代数式的实际意义是 .
15.今年我省荔枝又喜获丰收. 目前市场价格稳定,荔枝种植户普遍获利. 据估计,今年全省荔枝总产量为50 000吨,销售收入为61 000万元. 已知“妃子笑”品种售价为1.5万元/吨,其它品种平均售价为0.8万元/吨,求“妃子笑”和其它品种的荔枝产量各多少吨. 如果设“妃子笑”荔枝产量为x吨,其它品种荔枝产量为y吨,那么可列出方程组为 .
16. 如图,D、E两点分别在AC、AB上,且DE与BC不平行,请填上一个你认为合适的条件:
,使得△ADE∽△ABC.
17.如图,已知∠AOB=30°,M为OB边上一点,以M为圆心、2cm为半径作M. 若点⊙M在OB边上运动,则当OM= cm时,⊙M与OA相切.
18. 某住宅小区6月份随机抽查了该小区6天的用水量(单位:吨),结果分别是30、34、32、37、28、31,那么,请你估计该小区6月份(30天)的总用水量约是 吨.
19. 在一个不透明的袋中装有除颜色外其余都相同的3个小球,其中一个红球、两个黄球. 如果第一次先从袋中摸出一个球后不再放回,第二次再从袋中摸出一个,那么两次都摸到黄球的概率是 .
20.如图,如果 所在位置的坐标为(-1,-2), 所
在位置的坐标为(2,-2), 那么, 所在位置的坐
标为 .
|
21.(本题有2小题,第(1)小题满分5分,第(1)小题满分7分,请从中任选1题作答,如两小题都作答,以第1小题评分.)
(1)计算: .
(2)先化简,后求值:,其中
注意:你选答的题目是第 小题.
|
(1)求出营销人员的个人月收入y元与该营销员每月的销售量x万件(x≥0)之间的函数关系式;
(2)已知该公司营销员李平5月份的销售量为1.2万件,求李平5月份的收入.
|
海岸带状公园的“热带海洋世界”.在一次数学实践活动中,为了
测量这座“千年塔”的高度,雯雯在离塔底139米的C处(C与塔底B在同一水平线上),用高1.4米的测角仪CD测得塔项A的仰角α=43°(如图),求这座“千年塔”的高度AB(结果精确到0.1米).
(参考数据:tan43°≈0.9325, cot43°≈1.0724)
|
小题为选答题,满分3分,多答加分)
(1)请在如图所示的方格纸中,将△ABC向上平移3格,再向右平移6格,得△A1B1C1,再将△A1B1C1绕点B1按顺时针方向旋转90°,得△A2B1C2,最后将△A2B1C2以点C2为位似中心放大到2倍,得△A3B3C2;
(2)请在方格纸的适当位置画上坐标轴(一个小正方形的边长为1个单位长度),在你所
建立的直角坐标系中,点C、C1、C2的坐标分别为:点C( )、点C1( )、
点C2( )、
|
图完成下列各题:
(1)2003年我市的生产总值达到 亿元,约是建省前的1987年的 倍(倍数由四舍五入法精确到个位);
(2)小王把图1的折线统计图改为条形统计图,但尚未完成(如图2),请你帮他完成该条形图;
(3)2003年我市年生产总值与2002年相比,增长率是 %(结果保留三个有效数字);
(4)已知2003年我市的总人口是139.19万,那么该年我市人均生产总值约是 元(结果保留整数).
26.(本题满分8分)
|
果每千克盈利10元,每天可售出500千克. 经市场调查发现,在
进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克. 现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
|
在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(1)当直线MN绕点C旋转到图1的位置时,求证:
①△ADC≌△CEB;②DE=AD+BE;
(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;
(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.
注意:第(2) 、(3)小题你选答的是第 小题.
|
小题①也为必答题,满分4分,第(2)小题②为选答题,满分5分,多答加分.)
已知抛物线y=x2+(2n-1)x+n2-1 (n为常数).
(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式;
(2)设A是(1)所确定的抛物线上位于x轴下方、且在对称轴左侧的一个动点,过A作x轴的平行线,交抛物线于另一点D,再作AB⊥x轴于B,DC⊥x轴于C.
①当BC=1时,求矩形ABCD的周长;
②试问矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A点的坐标;如果不存在,请说明理由.