全国各地中考分类解析——解直角三角形华师大版

2014-5-11 0:12:35 下载本试卷

2005年全国各地中考分类解析——解直角三角形

一、选择题:

1.(泰山)一人乘雪橇沿坡比1∶的斜坡笔直滑下,滑下的距离s(米)与时间t(秒)

间的关系为s =10t+2t2,若滑到坡底的时间为4秒,则此人下降的高度为

A.72 m   B.36 m   C.36 m   D.18 m

2、(大连)张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为(  )

A. 3.2米  B.4.8米  C.5.2米  D.5.6米

3.(湖北黄石)小阳发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得CD=8米,BC=20米,CD与地面成30º角,且此时测得1米杆的影长为2米,则电线杆的高度为(  )

A.9米  B.28米  C.米  D.

B

 
4河南)如图,等于                     (   )

1

 
  A.      B.2

2

 

C

 

A

 
  C.     D.

5.(兰州)如果sinα+sin30=1那么锐角α的度数是( )
  A.15    B.30    C.45     D.60
6. (厦门) 如图1,在直角△ABC中,∠C=90°,若AB=5,AC=4,

   则sin∠B=

   A.      B.      C.       D. 

7.(黑龙江)在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为 (  )

  (A)60米  (B)40米  (C)30米  (D)25米

二、填空题:

1、(嘉兴)图7是引拉线固定电线杆的示意图。已知:CD⊥AB,CDm,∠CAD=∠DBD=60°,则拉线AC的长是___________m.              

  

2、(四川内江)如图河对岸有一古塔AB,小敏在C处测得塔顶A的仰角为α,向塔前进Sm到达D,在D处测得A的仰角为β,则塔高为    米。

3.(沈阳)在△中,30º,则 ∠BAC 的度数是           .

4. (四川资阳)如图4,如果△APB绕点B按逆时针方向旋转30°后得到

APB,且BP=2,那么PP'的长为____________.

(不取近似值. 以下数据供解题使用:sin15°=,cos15°=)

5.(惠安)同一时刻,一竿的高为1.5米,影长为1米,某塔影长为20米,则塔的高为   米.

14.(兰州)锐角A满足2sin(A-15)=则∠A=____
6、(梅州市)求值:sin230°+cos230°=        。

三、解答下列各题

1.(泰山)高为12.6米的教学楼ED前有一棵大树AB(如图1).

(1)某一时刻测得大树AB、教学楼ED在阳光下的投影长分别是BC=2.4米,DF=7.2米,求大树AB的高度.(3分)

(2)用皮尺、高为h米的测角仪,请你设计另一种测量大树AB高度的方案,要求:

①在图2上,画出你设计的测量方案示意图,并将应测数据标记在图上(长度用字母m n …表示,角度用希腊字母αβ …表示);(3分)

②根据你所画的示意图和标注的数据,计算大树AB高度(用字母表示).(3分)

图1                  图2

解:连结AC、EF

 (1)∵太阳光线是平行线∴AC∥EF∴∠ACB=∠EFD

       ∵∠ABC=∠EDF=90°∴△ABC∽△EDF……………………………1分

  ∴ ∴AB=4.2……………………2分

       答:大树AB的高是4.2米.………………………………………3分

(2)(方法一)  

                                         …………………………6分

如图MG=BN=m

       AG=m tanα ∴AB=(m tanα+h)米 ………………………9分


(方法二)

                                          …………………………6分

∴ AG = ∴AB=+h …………………9分

或AB=+h

(不加测角仪的高扣2分,其他测量方法,只要正确均可得分)

2.(嘉兴)如图,河对岸有一铁塔AB。在C处测得塔顶A的仰角为30°,向塔前进16米到达D,在D处测得A的仰角为45°,求铁塔AB的高。

解:在Rt△ABD中,∵∠ADB=45°,∴BD=AB。  ……2分

在Rt△ABC中,∵∠ACB=30°,∴BC=AB。 ……2分

设AB=x(米),∵CD=16,∴BC=x+16.∴x+16=x ……2分

。即铁塔AB的高为米。

另解:在Rt△ABC中,∵∠ACB=30°,∴BC=ABcot30° ……2分

在 Rt△ABD中,∵∠ADB=45°,∴BD=ABcot45° ……2分

∵CD=BC-BD=16,∴ ABcot30°- ABcot45°=16 ……2分

即铁塔AB的高为 米   ……2分

3. (锦州)如图,一条渔船某时刻在位置A观测灯塔B、C(灯塔B距离A处较近),两个灯塔恰好在北偏东65°45′的方向上,渔船向正东方向航行l小时45分钟之后到达D点,观测到灯塔B恰好在正北方向上,已知两个灯塔之间的距离是12海里,渔船的速度是16海里/时,又知在灯塔C周围18.6海里内有暗礁,问这条渔船按原来的方向继续航行,有没有触礁的危险?

  

评价要求:此题解法不惟一,只要合理,即可赋分.

  解:1小时45分=小时.

    在Rt△ABD中,(海里),

    ∠BAD=90°-65°45′=24°15′.   ……2分

    ∵cos24°15′=

    ∴(海里).   ……4分

    AC=AB+BC=30.71+12=42.71(海里).

    在Rt△ACE中,sin24°15′=

    ∴CE=AC·sin24°15′=42.71×0.4107=17.54(海里).

    ∵17.54<18.6,∴这条船不改变方向会有触礁危险.   ……8分

4.(宁德)6月以来,我省普降大雨,时有山体滑坡灾害发生。北峰小学教学楼后面紧邻着一个土坡,坡上面是一块平地,如图所示:AF∥BC,斜坡AB长30米,坡角ÐABC=65º。为了防止滑坡,保障安全,学校决定对该土坡进行改造,经过地质人员勘测,当坡角不超过45º时,可以确保山体不滑坡。

(1)求坡顶与地面的距离AD等于多少米?(精确到0.1米)

(2)为确保安全,学校计划改造时保持坡脚B不动,坡顶A沿AF削进到E点处,求AE至少是多少米?(精确到0.1米)

解:

5.(沈阳)如图8所示,A、B为两个村庄,AB、BC、CD为公路,BD为田地,AD为河宽,且CD与AD互相垂直.现在要从E处开始铺设通往村庄A、村庄B的一条电缆,共有如下两种铺设方案:

  方案一:; 方案二:.

  经测量得千米,千米,千米,∠BDC=45°,∠ABD=15°.

  已知:地下电缆的修建费为2万元/千米,水下电缆的修建费为4万元/千米.

  ⑴求出河宽AD(结果保留根号);

⑵求出公路CD的长;

⑶哪种方案铺设电缆的费用低?请说明你的理由.

6.(玉林)阅读下列材料,并解决后面的问题.

 在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c.过A作AD⊥BC于D(如图),则sinB=,sinC=,即AD=csinB,AD=bsinC,

于是csinB=bsinC,即

同理有

 所以………(*)

 即:在一个三角形中,各边和它所对角的正弦的比相等.

 (1)在锐角三角形中,若已知三个元素a、b、∠A,运用上述结论(*)和有关定理就可以

求出其余三个未知元素c、∠B、∠C,请你按照下列步骤填空,完成求解过程:

   第一步:由条件a、b、∠A     ∠B;

   第二步:由条件 ∠A、∠B.     ∠C;

   第三步:由条件.           c.

(2)一货轮在C处测得灯塔A在货轮的北偏西30°的方向上,随后货轮以28.4海里/时的速度按北偏东45°的方向航行,半小时后到达B处,此时又测得灯塔A在货轮的北偏西70°的方向上(如图11),求此时货轮距灯塔A的距离AB(结果精确到0.1.参考数据:sin40°=0.6 4 3,sin65°=0.90 6,sin70°=0.940,sin7 5°=0.9 6 6).

解:(1) , ∠A+∠B+∠C=180°,a、∠A、∠C或b、∠B、∠C,

  

(2)依题意,可求得∠ABC=65°,

   ∠A=40°.  (5分)

   BC=14.2.(6分)

   AB≈21.3.

   答:货轮距灯塔A的距离约为21.3海里.(9分)

7.(湖北黄石)初三(5)班综合实践小组去湖滨花园测量人工湖的长,如图A、D是人工湖边的两座雕塑,AB、BC是湖滨花园的小路,小东同学进行如下测量,B点在A点北偏东60º方向,C点在B点北偏东45º方向,C点在D点正东方向,且测得AB=20米,BC=40米,求AD的长。

(,结果精确到0.01米)

8. (江苏宿迁)某数学兴趣小组,利用树影测量树高.已测出树AB的影长AC为9米,并测出此时太阳光线与地面成30°夹角.

(1)求出树高AB

(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变,试求树影的最大长度.

(计算结果精确到0.1米,参考数据:≈1.414, ≈1.732)

 

 

 

解:(1)在Rt△A BC中,∠BAC=90°,∠C=30°

∵tanC=      ………2分

∴AB=AC·tanC   ………3分

    =9×     ………4分

    ≈5.2(米)   ………5分

(2)以点A为圆心,以AB为半径作圆弧,当太阳光线与圆弧相切时树影最长,点D为切点,DE⊥AD交AC于E点,(如图)           ………7分

在Rt△ADE中,∠ADE=90°,∠E=30°,

∴AE=2AD         ………9分

=2×5.2=10.4(米)        ………10分

答:树高AB约为5.2米,树影有最长值,最长值约为10.4米.……11分

9、(南通)如图,为了测量一条河的宽度,一测量员在河岸边的C处测得对岸一棵树A在正南方向,测量员向正东方向走180米到点B处,测得这棵树在南偏西60°的方向,求河的宽度(结果保留根号).

略解:河宽为米.

 

 

10、(河南课改)如图,某风景区的湖心岛有一凉亭A,其正东方向有一棵大树B,小明想测量A、B之间的距离,他从湖边的C处测得A在北偏西45°方向上,测得B在北偏东32°方向上,且量得B、C之间的距离为100米,根据上述测量结果,请你帮小明计算A、B之间的距离是多少?(结果精确到1米。参考数据:sin32°=0.5299,cos32°=0.8480)

解:过点C做CD⊥AB,垂足为D,

∵B点在A点的正东方向上,∴∠ACD=45°,∠DCB=32°,

在Rt△BCD中,BC=100,

(米)

(米),

在Rt△ACD中,AD=CD,

(米)。

11.(惠安)如图,在离旗杆40米的A处,用测角仪器测得旗杆顶的仰角为,已知测角仪器高AD=米,求旗杆的高度BE(精确到 0.1米,供选用的数据:

 解:

        答:旗杆的高度约24.9米.---------(8分)

12. (兰州)如图9某海关缉私艇巡逻到达A处时接到情报,在A处北偏西60方向的B处发现一艘可疑船只正以24海里/时的速度向正东方向前进,上级命令要对可疑船只进行检查,该艇立即沿北偏西45的方向快速前进,经过1小时的航行,恰好在C处截住可疑船只,求该艇的速度(结果保留整数 ,≈2.449,≈1.732≈1.414)

解:如图所示,在RtADC中,∠DAC=450∴设AD=DC=x(海里),    则AC=x 海里,在RtADB中,∠ADB=900∠DAB=600
∴∠B=300 ∴BD=AD即24+x=x∴x=12+1
∴AC=·12+1=12+ ≈46(海里) ∴V==46(海里/时)
答:该艇的速度约为46海里/时
13.(四川泸洲)随着社会的发展,人们对防洪的意识越来越强,今年为了提前做好防洪准备工作,某市正在长江边某处常出现险情的河段修建一防洪大坝,其横断面为梯形ABCD,如图7所示,根据图中数据计算坝底CD的宽度(结果保留根号).

解:在Rt△ADF中,∠D=60°,……………………1分

  ∴DFAF·cotD

=9×cot60°

=9×……………………………………………………3分

又在Rt△BEC

∵∠C=45°, ∴△BEC为等腰三角形

ECBE=9……………………………………………………………6分

在矩形AFEB中,FEAB=10………………………………………7分

DCDFFEEC

  =

  =

答:坝底DC的宽为………………………………………8分

14.(浙江台州) 如图,我市某广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且DB=5m,则 BC的长度是多少?现再在C点上方2m处加固另一条钢缆ED,那么钢缆ED的长度为多少?(结果保留三个有效数字)

解:在R t△BCD中,∵ BD=5,  ∴ BC=5= 4.1955≈4.20.  ……4分

     在R t△BCD中,BE=BC+CE= 6.20,   ………………5分

      ∴ DE=   …………………6分

       ==

≈7.96  ………………………9分

答:BC的长度约为4.20,钢缆ED的长度约7.96.………10分

(若BC=4.1955暂不扣分,但是ED的长度未保留三个有效数字扣1分)

15.(湖北十堰)(1)在一个宁静的夜晚,月光明媚,张芳和身高为1.65m的李红两位同学在人民广场上玩。张芳测得李红的影长为1m,并立即测得小树影长为1.5m,请你估算小树的高约为多少?

(1)……………………2分

      答:小树高约为2.4m……………………3分

16、(梅列区)某中学政教处在九年级进入学业考试总复习前,将一幅激励同学拼搏的标语悬挂在教学楼前。有位学生在与这幢教学楼相距20米的办公楼P处测得标语顶端A点的仰角为15°,底部B的俯角为10°,请你根据这位同学测定的数据,计算出这幅标语的长度。(精确到0.01米)