襄樊市中考数学试卷

2014-5-11 0:12:39 下载本试卷

2005年襄樊市初中升学统一考试

数学试题

卷Ⅰ  选择题(36分)

一、选择题(本大题共12道小题,每小题3分,共36分,在每小题给出的四个选项中,只

有一项是符合题目要求的,请将其序号在答题卡中涂黑作答.)

1.某地一天早晨的气温是℃,中午上升了11℃,午夜又下降了9℃,则午夜的气温是

A.5℃        B.℃          C.℃          D.

2.下列计算错误的是

A.                     B.

C.             D.

3.实数在数轴上表示如图1所示,则下列结论错误的是


             图1

A.   B.         C.        D.

4.某商场对一种家电商品作调价,按原价的8折出售,仍可获利10%,此商品的原价是2200元,则商品的进价是

A.1540元         B.1600元         C.1690元         D.1760元

5.下列说法正确的是

A.若,则          B.,则         

C.                  D.5的平方根是

6.若方程组有一个实数解,则的值是

A.         B.           C.         D.

7.在匀速运动中,路程(千米)一定时,速度(千米/时)关于时间(小时)的函数图象大致是


A             B               C                D

                    图2

8.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从地到地架设电线,总是尽可能沿着线段架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有

A.①②       B.①③       C.②④       D.③④

9.如图3,对角线上两点,且,连结,则图中共有全等三角形的对数是

图3

 


A.1对        B.2对        C.3对        D.4对

10.的半径为5cm,弦,则的距离是

A.7cm        B.8cm        C.7cm或1cm         D.1cm

11.一块半径为30cm,圆心角为的扇形铁皮,做成一个圆锥的侧面(粘合部分忽略不计),则该圆锥的底面半径是

A.30cm          B.20cm          C.10cm          D.15cm

12.甲、乙两人各打靶5次,已知甲所中的环数是8,7,9,7,9,乙所中的环数的平均数是,方差,那么对甲、乙射击成绩正确判断是

A.乙的射击成绩较稳定              B.甲的射击成绩较稳定

C.甲、乙的射击成绩稳定性相同      D.甲、乙的射击成绩无法比较

卷Ⅱ  非选择题(84分)

二、填空题(本大题共6道小题,每小题3分,共18分,把答案填在题中横线上)

13.分解因式:       

14.若一次函数的图象不过第一象限,则的取值范围是    

15.同一时刻,高为1.5m标杆影长为2.5m,一古塔在地面的影长为50m,那么古塔的高为

     m.

16.已知实数满足等式,则的值是     

17.如图4,已知半圆的直径4cm,点是这个

半圆的三等分点,则弦围成的阴影部分面

积为       cm

18.如图5,用有花纹和没有花纹的两种正方形地面砖按图5中所示的规律拼成若干图案,则第个图案中没有花纹的地面砖有     块.


第一个图案         第二个图案             第三个图案

三、解答题(本大题共8道小题,共计66分,解答应写出文字说明、证明过程或演算步骤)

19.(本题满分6分)

先化简,在求值

.其中

20.(本题满分6分)

    今年,某县(市)有14000名考生参加了理化生实验操作考试,现随机抽查100名考生的考试成绩(满分100分,分数取整数),列出频率分布表如下:

(1)  补全频率分布表;

(2)  若规定考试成绩不低于80分的为优秀,则这次考试的优秀率是多少?该县(市)理

化实验操作考试成绩为优秀的约有多少名?

分组

频数

频率

39.5~49.5

6

0.06

49.5~59.5

10

0.10

59.5~69.5

22

69.5~79.5

0.20

79.5~89.5

89.5~100.5

16

0.16

合计

100

1.00

21.(本题满分6分)

解方程

22.(本题满分7分)

    我们在探索平面图形性质时,往往通过剪拼的方式帮助我们寻找解题思路,例如,在证明三角形中位线性质定理时,就采用了图6-1的剪拼方式,将三角形转化为平行四边形使问题得以解决,请你仿照6-1的方法,在图6-2和图6-3中,分别只剪拼一次,实现下列转化:

(1)  将平行四边形转化为矩形;(2)将梯形转化为三角形

要求:选择其中一个图形,用尺规作出剪切线,保留痕迹,不写作法、其他画图,工具不限.


23.(本题满分7分)

    如图7,一块四边形土地,其中m,

m,求这块土地的面积

24.种植草莓大户张华现有22吨草莓等售,有两种销售渠道,一是运往省城直接批发给零售商,二是在本地市场零售,经过调查分析,这两种销售渠道每天销量及每吨所获纯利润见下表:

销售渠道

每日销量

(吨)

每吨所获纯

利润(元)

省城批发

1200

本地零售

2000

    受客观因素影响,张华每天只能采用一种销售渠道,草莓必须在10日内售出.

(1)若一部分草莓运往省城批发给零售商,其余在本地市场零售,请写出销售22吨草莓所获纯利润(元)与运往省城直接批发零售商的草莓量(吨)之间的函数关系式;

(2)  怎样安排这22吨草莓的销售渠道,才使张华所获纯利润最大?并求出最大纯利润.

25.(本题满分11分)

如图8,已知:的直径,分别是的切线,切点分别为的延长线的交点.

(1)  猜想的位置关系,并加以证明;

(2)  设的积为的半径为,试探究的关系;

(3)当时,求的值.

26.(本题满分13分)

    已知:的半径,以为直径的的弦相交于点,在如图9所示的直角坐标系中,轴于点,连结

(1)  当点在第一象限上移动时,写出你认为正确的结论:          

                     

(至少写出四种不同类型的结论);

(2)  若线段的长是关于的方程的两根,且

,求以点为顶点且经过点的抛物线的解析式;

(3)该抛物线上是否存在点,使得是以为直角边的直角三角形?若存在,求出点的坐标;若不存在,说明其理由.

2005年襄樊市初中升学统一考试

数学试题参考答案及评分标准

一、选择题(共12个小题,每小题3分,共计36分)

题 号

1

2

3

4

5

6

7

8

9

10

11

12

答 案

B

C

D

B

C

A

A

D

C

C

C

A

二、填空题(共6个小题,每小题3分,共计18分)

13.         14.          15.30

16.2或(填对1个只给1分)  17.               18.

二、解答题(共计66分)

19.解:原式················································ 1分

      ·············································································· 2分

      ································································ 4分

  当时,

  原式············································································ 5分

    ······························································································· 6分

20.解:(1)从上到下从左到右依次填写:0.22,20,26,0.26···························· 3分

  (前两空每空1分,后两空每空0.5分)

  (2)优秀率为:·················································· 4分

  ······················································································ 5分

答:优秀率为42%,该县(市)考试成绩为优秀的大约有人··················· 6分

21.解:设,则原方程可变形为.········································ 1分

  方程两边同乘以,约去分母,得.·································· 2分

  解这个方程,得.·································································· 3分

  当时,,去分母并解之,得······························· 4分

  当时,,去分母并解之,得························ 5分

  经检验,它们都是原方程的根.

原方程的根是.·························· 6分

22.解:


评分说明:每个图形中,画出剪切线给1分,画出所拼图形3分,其中一个用尺规画出剪切线的再给1分,共7分.

23.解:延长交于点··········································································· 1分

  

  ······································································· 2分

  在Rt.······························································ 3分

  ····················································· 4分

  在Rt

  ························································ 5分

  

   

   ·································································································· 6分

  答:这块土地的面积为m2·································································· 7分

  评分说明:若过,过,这样分割,

参照以上评分标准分步给分.

  24.解:(1)所求函数关系式为

·············································································· 2分

···················································································· 3分

(2)由于草莓必须在10天内售完

则有······················································································ 5分

解之,得····························································································· 7分

在函数中,

*的增大而减小····················································································· 8分

*时,有最大值31200(元)························································ 9分

答:用4天时间运往省城批发,6天时间在本地零售.(回答销量也可)才使获利

润最大,最大利润为31200元.················ 10分

25.解:(1)猜想:······················· 1分

  证明:连结

  分别切两点

  

  ······································· 2分

  

  又

  

  ·································································································· 3分

 (2)连结.··························································································· 4分

  在中,

  是直径,

  又············································ 5分

  ··················· 6分

(3)在

··········································································· 7分

··············································· 8分

····························································································· 9分

解之,得.即的值分别为

······················································································································ 11分

26.(1)

  

  的度数的度数.

  评分说明:以上八类结论,写出一类中的一个结论给1分,同类中多写的结论不再

给分,最高不超过4分.

(2)的长是关于的方程的两根.

直径,且

.···················· 5分

,解之,得

.······································································ 6分

代入原方程,得

解之,得

··································································· 7分

轴于,则

.即.·········································· 8分

*抛物线顶点为设抛物线的解析式为

点坐标代入,得.所求抛物线解析式为.················ 9分

(3)抛物线上存在点,使得是以为直角边的直角三角形.

①当时,点必须在的延长线上,设直线的解析式为

.························································ 10分

解方程组  得  (即为点,舍去)

······················································································································ 11分

②当为直角时,延长,连结,则直径,

四边形内接矩形.

轴于,则

可求得直线的解析式为····················································· 12分

解方程组(即为点,舍去)

的坐标为··············································· 13分