2005年全国高考数学试题分类汇编——圆锥曲线
第一部分,选择题。
1. (2005全国卷Ⅰ文第6题) 已知双曲线的一条准线为,则该双曲线的离心率为 ( )
(A) (B) (C) (D)
2 (2005全国卷Ⅰ理第6题) 已知双曲线的一条准线与抛物线的准线重合,则该双曲线的离心率为 ( )
(A) (B) (C) (D)
3. (2005全国卷II文第5题)抛物线上一点的纵坐标为4,则点与抛物线焦点的距离为 ( )
(A) 2 (B) 3 (C) 4 (D) 5
4.(2005全国卷II文第6题) 双曲线的渐近线方程是 ( )
(A) (B) (C) (D)
5. (2005全国卷II理第6题) 已知双曲线的焦点为、,点在双曲线上且轴,则到直线的距离为 ( )
(A) (B) (C) (D)
6. (2005全国卷III理第9题,文第9题) 已知双曲线的焦点为F1、F2,点M在双曲线上且则点M到x轴的距离为 ( )
(A) (B) (C) (D)
7. (2005全国卷III理第10题,文第10题) 设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是 ( )
(A) (B) (C) (D)
8. (2005辽宁卷第11题) 已知双曲线的中心在原点,离心率为.若它的一条准线与抛物线的准线重合,则该双曲线与抛物线的交点到原点的距离是 ( )
A.2+ B. C. D.21
9.(2005江苏卷第6题)抛物线y=4上的一点M到焦点的距离为1,则点M的纵坐标是 ( )
( A ) ( B ) ( C ) ( D ) 0
10. (2005江苏卷第11题) 点P(-3,1)在椭圆的左准线上.过点P且方向为a=(2,-5)的光线,经直线=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为 ( )
( A ) ( B ) ( C ) ( D )
11. (2005广东卷第5题)若焦点在x轴上的椭圆的离心率为,则m= ( )
(A) (B) (C) (D)
12. (2005重庆卷理第9题,文第9题) 若动点(x,y)在曲线(b>0)上变化,则x2+2y的最大值为 ( )
(A) ; (B) ;
(C) ; (D) 2b。
13. (2005天津卷理第5题,文第6题) 设双曲线以椭圆长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为 ( )
A. B. C. D.
14.(2006天津卷理第6题) 从集合{1,2,3…,11}中任选两个元素作为椭圆方程中的m和n,则能组成落在矩形区域B={(x,y) x<11且y<9}内的椭圆个数为 ( )
A.43 B. 72 C. 86 D. 90
15.(2005湖南卷理第7题,文第8题)已知双曲线-=1(a>0,b>0)的右焦点为F,右准线与一条渐近线交于点A,△OAF的面积为(O为原点),则两条渐近线的夹角为( )
A.30º B.45º C.60º D.90º
16. (2005湖北卷理第5题,文第6题)双曲线离心率为2,有一个焦点与抛物线的焦点重合,则mn的值为 ( )
A. B. C. D.
17. (2005福建卷文第9题)
已知定点A、B且AB=4,动点P满足PA-PB=3,则PA的最小值是 ( )
A. B. C. D.5
18.(2005福建卷理第10题)已知F1、F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是 ( )
A. B. C. D.
19. (2005福建卷理第11题)设的最小值是 ( )
A. B. C.-3 D.
20. (2005浙江卷文第9题) 数y=ax2+1的图象与直线y=x相切,则a= ( )
(A) (B) (C) (D)1
21. (2005上海理第15题)过抛物线的焦点作一条直线与抛物线相交于A、B两点,它们的横坐标之和等于5,则这样的直线 ( )
A.有且仅有一条 B.有且仅有两条 C.有无穷多条 D.不存在
22. (2005山东卷理第12题) 直线关于原点对称的直线为,若与椭圆的交点为A、B,点为椭圆上的动点,则使的面积为的点的个数为 ( )
(A)1 (B)2 (C)3 (D)4
第二部分,填空题
23. (2005重庆卷文第16题)
已知,B是圆F:(F为圆心)上一动点,线段AB的垂直平分线交BF于P,则动点P的轨迹方程为_____________。
24. (2005重庆卷理第16题)
连接抛物线上任意四点组成的四边形可能是 (填写所有正确选项的序号).
①菱形 ②有3条边相等的四边形 ③梯形
④平行四边形 ⑤有一组对角相等的四边形
25. (2005北京卷文第9题)
抛物线y2=4x的准线方程是 ;焦点坐标是 .
26.(2005江西卷理第16题,文第16题)
以下四个关于圆锥曲线的命题中:
①设A、B为两个定点,k为非零常数,,则动点P的轨迹为双曲线;
②过定圆C上一定点A作圆的动点弦AB,O为坐标原点,若则动点P的轨迹为椭圆;
③方程的两根可分别作为椭圆和双曲线的离心率;
④双曲线有相同的焦点.
其中真命题的序号为 (写出所有真命题的序号)
27. (2005浙江卷理第13题,文第13题)
过双曲线(a>0,b>0)的左焦点且垂直于x轴的直线与双曲线相交于M、N两点,以MN为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.
28. (2005上海理第5题)
若双曲线的渐近线方程为,它的一个焦点是,则双曲线的方程是__________。
29. (2005上海文第7题)
若椭圆长轴长与短轴长之比为2,它的一个焦点是(2,0),则椭圆的标准方程是_______________.
30. (2005山东卷理第14题)
设双曲线的右焦点为,右准线与两条渐近线交于P、两点,如果是直角三角形,则双曲线的离心率.
第三部分,解答题
31. (2005全国卷Ⅰ理第21题,文第22题)
已知椭圆的中心为坐标原点O,焦点在轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与共线.
(1)求椭圆的离心率;
(2)设M为椭圆上任意一点,且,证明为定值.
32. (2005全国卷II理第21题,文第22题)
、、、四点都在椭圆上,为椭圆在轴正半轴上的焦点.已知与共线,与共线,且.求四边形的面积的最小值和最大值.
33.(2005全国卷III理第21题,文第22题)
设两点在抛物线上,是AB的垂直平分线,
(Ⅰ)当且仅当取何值时,直线经过抛物线的焦点F?证明你的结论;
(文Ⅱ)当时,求直线的方程.
(理Ⅱ)当直线的斜率为2时,求在轴上截距的取值范围。
34.(2005辽宁卷第21题,满分14分)
已知椭圆的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足
(Ⅰ)设为点P的横坐标,证明;
(Ⅱ)求点T的轨迹C的方程;
(Ⅲ)试问:在点T的轨迹C上,是否存在点M,
使△F1MF2的面积S=若存在,求∠F1MF2
的正切值;若不存在,请说明理由.
35.(2005广东卷第17题)
在平面直角坐标系xOy中,抛物线上异于坐标原点O的两不同动点A、B满足(如图4所示).
(Ⅰ)求得重心G(即三角形三条中线的交点)的轨迹方程;
(Ⅱ)的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
(35题图) (36题图) (37题图)
36.(2005江西卷文第21题,满分12分)
如图,M是抛物线上y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB.
(1)若M为定点,证明:直线EF的斜率为定值;
(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹
37.(2005江西卷理第22题,满分14分)
如图,设抛物线的焦点为F,动点P在直线上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.
(1)求△APB的重心G的轨迹方程.
(2)证明∠PFA=∠PFB.
38. (2005重庆卷文第21题,满分12分)
已知中心在原点的双曲线C的右焦点为(2,0),右顶点为。
(1) 求双曲线C的方程;
(2) 若直线l:与双曲线C恒有两个不同的交点A和B,且(其中O为原点),求k的取值范围。
39. (2005重庆卷理第21题,满分12分)
已知椭圆C1的方程为,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点。
(1) 求双曲线C2的方程;
(2) 若直线l:与椭圆C1及双曲线C2恒有两个不同的交点,且l与C2的两个交点A和B满足(其中O为原点),求k的取值范围。
40. (2005浙江卷文第19题)
如图,已知椭圆的中心在坐标原点,焦点F1,F2在x轴上,长轴A1A2的长为4,左准线l与x轴的交点为M,MA1∶A1F1=2∶1.
(Ⅰ)求椭圆的方程;
(Ⅱ)若点P为l上的动点,求∠F1PF2最大值.
41. (2005浙江卷理第17题)
如图,已知椭圆的中心在坐标原点,焦点F1,F2在x轴上,长轴A1A2的长为4,左准线l与x轴的交点为M,MA1∶A1F1=2∶1.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线l1:x=m(m>1),P为l1上的动点,使∠F1PF2最大的点P记为Q,求点Q的坐标(用m表示).
42. (2005天津卷理第21题,文第22题,满分14分)
抛物线C的方程为,过抛物线C上一点P(x0,y0)(x 0≠0)作斜率为k1,k2的两条直线分别交抛物线C于A(x1,y1)B(x2,y2)两点(P,A,B三点互不相同),且满足.
(Ⅰ)求抛物线C的焦点坐标和准线方程;
(Ⅱ)设直线AB上一点M,满足,证明线段PM的中点在y轴上;
(Ⅲ)当=1时,若点P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标的取值范围.
43. (2005上海卷文第21题,本题共有3个小题,第1小题满分4分, 第2小题满分6分,
第3小题满分6分.)
已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4、且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.
(1)求抛物线方程;
(2)过M作MN⊥FA, 垂足为N,求点N的坐标;
(3)以M为圆心,MB为半径作圆M.当K(m,0)是x轴上一动点时,丫讨论直线AK与圆M的位置关系.
44. (2005上海理第19题,,本题共有3个小题,满分14分,其中第1小题满分6分, 第2小题满分8分)
如图,点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,。
(1)求点P的坐标;
(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于,求椭圆上的点到点M的距离的最小值。
45. (2005山东卷理第22题,文第22题)
已知动圆过定点,且与直线相切,其中.
(I)求动圆圆心的轨迹的方程;
(理II)设A、B是轨迹上异于原点的两个不同点,直线和的倾斜角分别为和,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标.
(文II)设A、B是轨迹上异于原点的两个不同点,直线和的倾斜角分别为和,当变化且时,证明直线恒过定点,并求出该定点的坐标
46.(2005湖南卷理第19题,文第21题,满分14分)
已知椭圆C:+=1(a>b>0)的左.右焦点为F1、F2,离心率为e. 直线l:y=ex+a与x轴.y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设=λ.
(Ⅰ)证明:λ=1-e2;
(Ⅱ)若,△PF1F2的周长为6;写出椭圆C的方程;
(Ⅲ)确定λ的值,使得△PF1F2是等腰三角形.
47.(2005湖北卷理第21题,文第22题)
设A、B是椭圆上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点.
(Ⅰ)确定的取值范围,并求直线AB的方程;
(Ⅱ)试判断是否存在这样的,使得A、B、C、D四点在同一个圆上?并说明理由.
48.(2005福建卷理第21题,文第22题)
已知方向向量为的直线l过点()和椭圆的焦点,且椭圆C的中心关于直线l的对称点在椭圆C的右准线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在过点E(-2,0)的直线m交椭圆C于点M、N,满足cot∠MON≠0(O为原点).若存在,求直线m的方程;若不存在,请说明理由.
49.(2005北京卷理第18题,文第20题)
如图,直线 l1:y=kx(k>0)与直线l2:y=-kx之间的阴影区域(不含边界)记为W,其左半部分记为W1,右半部分记为W2.
(I)分别用不等式组表示W1和W2;
(II)若区域W中的动点P(x,y)到l1,l2的距离之积等于d2,求点P的轨迹C的方程;
(III)设不过原点O的直线l与(II)中的曲线C相交于M1,M2两点,且与l1,l2分别交于M3,M4两点.求证△OM1M2的重心与△OM3M4的重心重合.
参考答案
1.D 2.D 3. D 4. C 5. C 6. C 7. D 8. B 9. B 10. A
11. B 12. A 13. C 14.B 15. D 16. A 17. C 18. D 19. C
20. B 21. B 22. B 23. 24.②③⑤ 25. x=-1;(1, 0)
26.③④ 27. 2 28. 29. 30..
31. (2005全国卷Ⅰ理第21题,文第22题)
解:设椭圆方程为
则直线AB的方程为
化简得.
令则
共线,得
又
∴
∴即,∴
∴
故离心率为
(II)证明:由(I)知,所以椭圆可化为.
设,由已知得
在椭圆上,
即 ①
由(I)知
∴
∴
又又,代入①得
故为定值,定值为1
32. (2005全国卷II理第21题,文第22题)
解:如图,由条件知MN和PQ是椭圆的两条弦,相交于焦点F(0,1),且PQ⊥MN,直线PQ、NM中至少有一条存在斜率,不妨设PQ的斜率为K,又PQ过点F(0,1),故PQ的方程为=+1
将此式代入椭圆方程得(2+)+2-1=0
设P、Q两点的坐标分别为(,),(,),则
从而
亦即
(1)当≠0时,MN的斜率为-,同上可推得
故四边形面积
令=得
∵=≥2
当=±1时=2,S=且S是以为自变量的增函数
∴
②当=0时,MN为椭圆长轴,MN=2,PQ=。∴S=PQMN=2
综合①②知四边形PMQN的最大值为2,最小值为。
33.(2005全国卷III理第21题,文第22题)
解:(Ⅰ)
<法一>
两点到抛物线的准线的距离相等.
∵抛物线的准线是x轴的平行线,不同时为0,
∴上述条件等价于
∵, ∴上述条件等价于
即当且仅当时,l经过抛物线的焦点F.
<法二>
∵抛物线,即,
∴焦点为………………………………………………………1分
(1)直线的斜率不存在时,显然有………………………………3分
(2)直线的斜率存在时,设为k,截距为b
即直线:y=kx+b 由已知得:
……………5分
……………7分
即的斜率存在时,不可能经过焦点……………………………………8分
所以当且仅当=0时,直线经过抛物线的焦点F…………………………9分
(文Ⅱ)
当时,
直线的斜率显然存在,设为:y=kx+b………………………………10分
则由(Ⅰ)得:
………………………11分
…………………………………………13分
所以直线的方程为
(理II)
设l在y轴上的截距为b,依题意得l的方程为;过点A、B的直线方程可写为,所以满足方程得;
A,B为抛物线上不同的两点等价于上述方程的判别式
即
设AB的中点N的坐标为,则
由
即得l在y轴上截距的取值范围为().
34.(2005辽宁卷第21题,满分14分)
(Ⅰ)证法一:设点P的坐标为
由P在椭圆上,得
由,所以 ………………………3分
证法二:设点P的坐标为记
则
由
证法三:设点P的坐标为椭圆的左准线方程为
由椭圆第二定义得,即
由,所以…………………………3分
(Ⅱ)解法一:设点T的坐标为
当时,点(,0)和点(-,0)在轨迹上.
当时,由,得.
又,所以T为线段F2Q的中点.
在△QF1F2中,,所以有
综上所述,点T的轨迹C的方程是…………………………7分
解法二:设点T的坐标为 当时,点(,0)和点(-,0)在轨迹上.
当时,由,得.
又,所以T为线段F2Q的中点.
设点Q的坐标为(),则
因此 ①
由得 ②
将①代入②,可得
综上所述,点T的轨迹C的方程是……………………7分
|
由③得,由④得 所以,当时,存在点M,使S=;
当时,不存在满足条件的点M.………………………11分
当时,,
由,
,
,得
解法二:C上存在点M()使S=的充要条件是
|
由④得 上式代入③得
于是,当时,存在点M,使S=;
当时,不存在满足条件的点M.………………………11分
当时,记,
由知,所以…………14分
35.(2005广东卷第17题)
解:(I)设△AOB的重心为G(x,y),A(x1,y1),B(x2,y2),则 …(1)
∵OA⊥OB ∴,即,……(2)
又点A,B在抛物线上,有,代入(2)化简得
∴
所以重心为G的轨迹方程为
(II)
由(I)得
当且仅当即时,等号成立。
所以△AOB的面积存在最小值,存在时求最小值1;
36.(2005江西卷文第21题,满分12分)
解:(1)设M(y,y0),直线ME的斜率为k(l>0)
则直线MF的斜率为-k,方程为
∴由,消
解得
∴(定值)
所以直线EF的斜率为定值
(2)直线ME的方程为
由得
同理可得
设重心G(x, y),则有
消去参数得
37.(2005江西卷理第22题,满分14分)
解:(1)设切点A、B坐标分别为,
∴切线AP的方程为:
切线BP的方程为:
解得P点的坐标为:
所以△APB的重心G的坐标为 ,
所以,由点P在直线l上运动,从而得到重心G的轨迹方程为:
(2)方法1:因为
由于P点在抛物线外,则
∴
同理有
∴∠AFP=∠PFB.
方法2:①当所以P点坐标为,则P点到直线AF的距离为:
即
所以P点到直线BF的距离为:
所以d1=d2,即得∠AFP=∠PFB.
②当时,直线AF的方程:
直线BF的方程:
所以P点到直线AF的距离为:
同理可得到P点到直线BF的距离,因此由d1=d2,可得到∠AFP=∠PFB.
38. (2005重庆卷文第21题,满分12分)
解:(Ⅰ)设双曲线方程为
由已知得
故双曲线C的方程为
(Ⅱ)将
由直线l与双曲线交于不同的两点得
即 ① 设,则
而
于是 ②
由①、②得
故k的取值范围为
39. (2005重庆卷理第21题,满分12分)
解:(Ⅰ)设双曲线C2的方程为,则
故C2的方程为
(II)将
由直线l与椭圆C1恒有两个不同的交点得
即 ①
.
由直线l与双曲线C2恒有两个不同的交点A,B得
解此不等式得 ③
由①、②、③得
故k的取值范围为
40. (2005浙江卷文第19题)
本题主要考查椭圆的几何性质、椭圆方程、两条直线的夹角等基础知识,考查解析几何的基本思想方法和综合解题能力。满分14分。
解:(Ⅰ)设椭圆方程为,半焦距为,则
(Ⅱ)
41. (2005浙江卷理第17题)
解:(I)设椭圆方程为(),半焦距为c, 则
,,
由题意,得 ,解得
故椭圆方程为
(II)设P(
当时,
当时,
只需求的最大值即可。
直线的斜率,直线的斜率
当且仅当=时,最大,
∴Q(m,±),m>1.
42. (2005天津卷理第21题,文第22题,满分14分)
解:(Ⅰ)由抛物线的方程()得,焦点坐标为,准线方程为.
(Ⅱ)证明:设直线的方程为,直线的方程为.
点和点的坐标是方程组的解.将②式代入①式得,于是,故 ③
又点和点的坐标是方程组的解.将⑤式代入④式得.于是,故.
由已知得,,则. ⑥
设点的坐标为,由,则.
将③式和⑥式代入上式得,即.
∴线段的中点在轴上.
(Ⅲ)因为点在抛物线上,所以,抛物线方程为.
由③式知,代入得.
将代入⑥式得,代入得.
因此,直线、分别与抛物线的交点、的坐标为
,.
于是,,
.
因为钝角且、、三点互不相同,故必有.
求得的取值范围是或.又点的纵坐标满足,故当时,;当时,.即
43. (2005上海卷文第21题,本题共有3个小题,第1小题满分4分, 第2小题满分6分,
第3小题满分6分.)
[解](1) 抛物线y2=2px的准线为x=-,于是4+=5, ∴p=2.
∴抛物线方程为y2=4x.
(2)∵点A是坐标是(4,4), 由题意得B(0,4),M(0,2),
又∵F(1,0), ∴kFA=;MN⊥FA, ∴kMN=-,
则FA的方程为y=(x-1),MN的方程为y-2=-x,解方程组得x=,y=,
∴N的坐标(,).
(1) 由题意得, ,圆M.的圆心是点(0,2), 半径为2,
当m=4时, 直线AK的方程为x=4,此时,直线AK与圆M相离.
当m≠4时, 直线AK的方程为y=(x-m),即为4x-(4-m)y-4m=0,
圆心M(0,2)到直线AK的距离d=,令d>2,解得m>1
∴当m>1时, AK与圆M相离;
当m=1时, AK与圆M相切;
当m<1时, AK与圆M相交.
44. (2005上海理第19题,,本题共有3个小题,满分14分,其中第1小题满分6分, 第2小题满分8分)
[解](1)由已知可得点A(-6,0),F(0,4)
设点P(,),则={+6, },={-4, },由已知可得
则2+9-18=0, =或=-6.
由于>0,只能=,于是=.
∴点P的坐标是(,)
(2) 直线AP的方程是-+6=0.
设点M(,0),则M到直线AP的距离是.
于是=,又-6≤≤6,解得=2.
椭圆上的点(,)到点M的距离有
,
由于-6≤≤6, ∴当=时,d取得最小值
45. (2005山东卷理第22题,文第22题)
解:(I)如图,设为动圆圆心,为记为,过点作直线的垂线,垂足为,由题意知:即动点到定点与定直线的距离相等,由抛物线的定义知,点的轨迹为抛物线,其中为焦点,为准线,所以轨迹方程为;
(理II)如图,设,由题意得(否则)且所以直线的斜率存在,设其方程为,显然,将与联立消去,得由韦达定理知①
(1)当时,即时,所以,所以由①知:所以因此直线的方程可表示为,即所以直线恒过定点
(2)当时,由,得==
将①式代入上式整理化简可得:,所以,
此时,直线的方程可表示为即
所以直线恒过定点
所以由(1)(2)知,当时,直线恒过定点,当时直线恒过定点.
(文II)
直线的方程可表示为即
所以,直线恒过定点.
46.(2005湖南卷理第19题,文第21题,满分14分)
(Ⅰ)证法一:因为A、B分别是直线l:与x轴、y轴的交点,所以A、B的坐标分别是.
所以点M的坐标是(). 由
即
证法二:因为A、B分别是直线l:与x轴、y轴的交点,所以A、B的坐标分别是设M的坐标是
所以 因为点M在椭圆上,所以
即
解得
(Ⅱ)当时,,所以 由△MF1F2的周长为6,得
所以 椭圆方程为
(Ⅲ)解法一:因为PF1⊥l,所以∠PF1F2=90°+∠BAF1为钝角,要使△PF1F2为等腰三角形,必有PF1=F1F2,即
设点F1到l的距离为d,由
得 所以
即当△PF1F2为等腰三角形.
解法二:因为PF1⊥l,所以∠PF1F2=90°+∠BAF1为钝角,要使△PF1F2为等腰三角形,必有PF1=F1F2,
设点P的坐标是,
则
由PF1=F1F2得
两边同时除以4a2,化简得 从而
于是. 即当时,△PF1F2为等腰三角形.
47.(2005湖北卷理第21题,文第22题)
(I)解法1:依题意,可设直线AB的方程为,整理得
①
设①的两个不同的根,
②
是线段AB的中点,得
解得k=-1,代入②得,>12,即的取值范围是(12,+).
于是,直线AB的方程为
解法2:设
依题意,
(II)解法1:代入椭圆方程,整理得
③
③的两根,
于是由弦长公式可得
④
将直线AB的方程
⑤
同理可得
⑥
假设在在>12,使得A、B、C、D四点共圆,则CD必为圆的直径,点M为圆心.点M到直线AB的距离为
⑦
于是,由④、⑥、⑦式和勾股定理可得
故当时,A、B、C、D四点均在以M为圆心,为半径的圆上.
(注:上述解法中最后一步可按如下解法获得:
A、B、C、D共圆△ACD为直角三角形,A为直角
⑧
由⑥式知,⑧式左边=
由④和⑦知,⑧式右边=
∴⑧式成立,即A、B、C、D四点共圆
解法2:由(II)解法1及.
代入椭圆方程,整理得
③
将直线AB的方程代入椭圆方程,整理得
⑤
解③和⑤式可得
不妨设
∴
计算可得,∴A在以CD为直径的圆上.
又B为A关于CD的对称点,∴A、B、C、D四点共圆.
(注:也可用勾股定理证明AC⊥AD)
48.(2005福建卷理第21题,文第22题)
(I)解法一:直线, ①
过原点垂直的直线方程为, ②
解①②得
∵椭圆中心(0,0)关于直线的对称点在椭圆C的右准线上,
∵直线过椭圆焦点,∴该焦点坐标为(2,0).
故椭圆C的方程为 ③
解法二:直线.
设原点关于直线对称点为(p,q),则解得p=3.
∵椭圆中心(0,0)关于直线的对称点在椭圆C的右准线上,
∵直线过椭圆焦点,∴该焦点坐标为(2,0).
故椭圆C的方程为 ③
(II)解法一:设M(),N().
当直线m不垂直轴时,直线代入③,整理得
点O到直线MN的距离
即
|
即
整理得
当直线m垂直x轴时,也满足.
故直线m的方程为
或或
经检验上述直线均满足.所以所求直线方程为
或或
解法二:设M(),N().
当直线m不垂直轴时,直线代入③,整理得
∵E(-2,0)是椭圆C的左焦点,
∴MN=ME+NE
=
以下与解法一相同.
解法三:设M(),N().
设直线,代入③,整理得
即
∴=,整理得
解得或
故直线m的方程为或或
经检验上述直线均满足
所以所求直线方程为或或
49.(2005北京卷理第18题,文第20题)
解:(I)W1={(x, y) kx<y<-kx, x<0},W2={(x, y) -kx<y<kx, x>0},
(II)直线l1:kx-y=0,直线l2:kx+y=0,由题意得
, 即,
由P(x, y)∈W,知k2x2-y2>0,
所以 ,即,
所以动点P的轨迹C的方程为;
(III)当直线l与x轴垂直时,可设直线l的方程为x=a(a≠0).由于直线l,曲线C关于x轴对称,且l1与l2关于x轴对称,于是M1M2,M3M4的中点坐标都为(a,0),所以△OM1M2,△OM3M4的重心坐标都为(a,0),即它们的重心重合,
当直线l1与x轴不垂直时,设直线l的方程为y=mx+n(n≠0).
由,得
由直线l与曲线C有两个不同交点,可知k2-m2≠0且
△=>0
设M1,M2的坐标分别为(x1, y1),(x2, y2),
则, ,
设M3,M4的坐标分别为(x3, y3),(x4, y4),
由得
从而,
所以y3+y4=m(x3+x4)+2n=m(x1+x2)+2n=y1+y2,
于是△OM1M2的重心与△OM3M4的重心也重合.