2005年全国高考数学试卷三(四川理)
(必修+选修II)
第一卷(选择题,共60分)
一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、 已知为第三象限的角,则所在的象限是( )
A 第一或第二象限 B 第二或第三象限 C第一或第三象限 D 第二或第四象限
2、已知过点和的直线与直线平行,则的值为 ( )
A B C D
3、若的展开式中的系数是( )
A B C D
4、设三棱柱的体积为,分别是侧棱、上的点,且,则四棱锥的体积为( )
A B C D
5、 ( )
A B C D
6、若,则( )
A B C D
7、设,且,则( )
A B C D
8、 ( )
A B C 1 D
9、已知双曲线的焦点为,点在双曲线上且,则点到轴的距离为( )
A B C D
10、设椭圆的两个焦点分别为,过作椭圆长轴的垂线交椭圆于点,若为等腰直角三角形,则椭圆的离心率为( )
A B C D
11、不共面的四个定点到平面的距离都相等,这样的平面共有( )
A 3个 B 4个 C 6个 D 7个
12、计算机中常用的十六进制是逢16进1的记数制,采用数字0-9和字母A-F共16个记数符号;这些符号与十进制的数的对应关系如下表:
十六进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
十进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
例如,用十六进制表示:E+D=1B,则( )
A 6E B 72 C 5F D B0
二、填空题:本大题共4 个小题,每小题4分,共16分,把正确答案填在题中横线上。
13、已知复数:,复数满足,则复数
14、已知向量,,,且A、B、C三点共线,则
15、设为平面上过点的直线,的斜率等可能地取,用表示坐标原点到的距离,则随机变量的数学期望 。
16、已知在中,,是上的点,则点到的距离乘积的最大值是
三、解答题:本大题共6个小题,共74分。
17、(本小题满分12分)
设甲、乙、丙三台机器是否需要照顾相互没有影响,已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125
(Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别为多少;
(Ⅱ)计算这个小时内至少有一台机器需要照顾的概率
18、(本小题满分12分)
如图,在四棱锥V-ABCD中,底面ABCD是正方形,
侧面VAD是正三角形,平面VAD⊥底面ABCD
(Ⅰ)证明AB⊥平面VAD
(Ⅱ)求面VAD与面VDB所成的二面角的大小
19、(本小题满分12分)
中,内角的对边分别是,已知成等比数列,且
(Ⅰ)求的值
(Ⅱ)设,求的值。
20(本小题满分12分)
在等差数列中,公差,是与的等比中项,已知数列
成等比数列,求数列的通项
21、(本小题满分12分)
设,两点在抛物线上,是的垂直平分线。
(Ⅰ)当且仅当取何值时,直线经过抛物线的焦点?证明你的结论;
(Ⅱ)当直线的斜率为2时,求在轴上截距的取值范围。
22、(本小题满分14分)
已知函数,
(Ⅰ)求的单调区间和值域;
(Ⅱ)设,函数,若对于任意,总存在,使得成立,求的取值范围
2005年全国高考数学试卷三(四川理) 参考答案
一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
题号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
答案 | D | B | B | C | A | C | C | B | C | D | D | A |
二、填空题:本大题共4 个小题,每小题4分,共16分,把正确答案填在题中横线上。
13. 14. 15. 16.
三、解答题:本大题共6个小题,共74分。
17.解:(Ⅰ)求已知得
解得:,,
所以甲、乙、丙每台机器在这个小时内需要照顾的概率分别为0.2,0.25,0.5
(Ⅱ)记的对立事件为,的对立事件为,的对立事件为,
则:,,
于是
所以这个小时内至少有一台机器需要照顾的概率为0.7
18.方法一:(Ⅰ)证明:
(Ⅱ)解:取VD的中点E,连结AE,BE
∵VAD是正三角形
∴AE⊥VD,AF=AD
∵AB⊥平面VAD ∴AB⊥AE
又由三垂线定理知BE⊥VD
因此,是所求二面角的平面角
于是,
即得所求二面角的大小为
方法二:以D为坐标原点,建立如图所示的坐标系。
(Ⅰ)证明:不妨设,则,
由,得
又,因而与平面内两条相交直线都垂直。
∴平面
(Ⅱ)解:设为中点,则
由,得,又
因此,是所求二面角的平面角。
∵
∴解得所求二面角的大小为
19.解:(Ⅰ)由得
由及正弦定理得
于是
(Ⅱ)由得,由可得,即
由余弦定理 得
∴
20.解:依题设得,
∴,整理得
∵ ∴
得
所以,由已知得是等比数列
由,所以数列也是等比数列,首项为1,
公比为,由此得
等比数列的首项,公比,所以
即得到数列的通项为
21.解:(Ⅰ)两点到抛物线的准线的距离相等,
∵抛物线的准线是轴的平行线,,依题意不同时为0
∴上述条件等价于
∵
∴上述条件等价于
即当且仅当时,经过抛物线的焦点。
(Ⅱ)设在轴上的截距为,依题意得的方程为;过点的直线方程可写为,所以满足方程
得
为抛物线上不同的两点等价于上述方程的判别式,即
设的中点的坐标为,则
,
由,得,于是
即得在轴上截距的取值范围为
22.解:对函数求导,得
令解得 或
当变化时,、的变化情况如下表:
x | 0 |
|
|
|
|
|
| 0 |
| ||
|
|
|
|
|
|
所以,当时,是减函数;当时,是增函数;
当时,的值域为
(Ⅱ)对函数求导,得
因此,当时,
因此当时,为减函数,从而当时有
又,,即当时有
任给,,存在使得,则
即
解式得 或
解式得
又,
故:的取值范围为