高考钦州市高三大联考(理科数学)

2014-5-11 0:13:21 下载本试卷

钦州市2006年高三毕业班第一次调研测试

理科数学(必修选修Ⅱ)

  本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.考试结束后,将本试卷和答题卡一并交回.共150分.考试时间120分钟.

第Ⅰ卷

注意事项:

1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.

3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

参考公式:

如果事件AB互斥,那么 PAB)=PA)+PB).

如果事件AB相互独立,那么 PA·B)=PA)·PB).

如果事件A在1次试验中发生的概率是P,那么n次独立重复试验中恰好发生次的概率

球的表面积公式 S=4πR2 其中R表示球的半径

球的体积公式 VπR3 其中R表示球的半径

一、选择题:

1如图,U是全集,MPSU的三个子集,则阴影部分所表示的集合是

A)(MPS

B)(MPS

C)(MPUS

DMPUS

2设函数fx)=sinπx),则下列命题中正确的是

 Afx)是周期为1的奇函数     Bfx)是周期为2的偶函数

Cfx)是周期为1的非奇非偶函数                Dfx)是周期为2的非奇非偶函数


3有如下三个命题:

①分别在两个平面内的两条直线一定是异面直线;

垂直于同一个平面的两条直线是平行直线;

垂直于同一个平面的两个平面互相平行;

过平面的一条斜线有一个平面与平面垂直.

其中正确命题的个数为

 A1          B2          C3          D4

4函数ylogx1)的函数的图象是

                   A          B            C D

5abc0,“ac0”是“曲线ax2by2c为椭圆”的

 A充分非必要条件       B必要非充分条件

C充分必要条件        D既非充分又非必要条件

6已知向量为单位向量,它们的夹角为60°,则3的值是

 A        B        C       D4

7用1,2,3,4,5这五个数字,组成比20 000大,而且百位数字不是3的没有重复数字的五位数共有

 A)64个    B)72个    C)78个    D)96

8等差数列an中,如a1a2a36a10a11a129,则a1a2a12

 A15         B30         C45         D60

9椭圆=1,两焦点间距离为6,则t

 A16         B34         C1634     D11

10已知双曲线的两个焦点为F1(-0),F20),P是此双曲线上的一点,且PF1PF2PF1·PF22,则该双曲线的方程

 A1  B1  C1  D1

11已知奇函数fx)的定义域为:{x||x2a|<aa0},则a的值为

 A0          B1          C2          D3

12函数fx)在上是增函数,A(0,-2)、B42)是其图象上的两点,则不等式

fx22的解集是

 A)(-∞,-2)∪(2,+∞)   B(-22

C)(-∞,0)∪(4,+∞)      D)(04


 钦州市2006年高三毕业班第一次调研测试

理科数学(必修+选修

第Ⅱ卷

题号

总分

17

18

19

20

21

22

得分

注意事项:

1.用钢笔或圆珠笔直接答在试题卷中.

2.答卷前将密封线内的项目填写清楚.

3.本卷共10小题,共90分.

得分

评卷人

 

二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.

13       

14x2y2x6y30上两点PQ关于直线kxy40对称,则k    

15一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出两个,则其中含红球个数的数学期望是_________________

16如图,正方体ABCDA1B1C1D1的棱长为a,将该正方体沿对角面BB1D1D切成两块,再将这两块拼接成一个不是正方体的四棱柱,那么所得四棱柱的全面积为       


三、解答题:本大题共6小题,共74解答应写出文字说明、证明过程或演算步骤.

评卷人

 

17.(本小题满分12分)

已知一扇形的周长为cc>0),当扇形的弧长为何值时,它有最大面积?并求出面积的最大值.


评卷人

 

18.(本小题满分12分)

6女同学和4男同学中随机选出3位同学进行体能测试,每位女同学能通过测试的概率均为,每位男同学能通过测试的概率均为,试求:

1)选出的3位同学中,至少有一位男同学的概率;

210位同学中的女同学甲和男同学乙同时被选中且通过测试的概率.


19.(本小题满分12分)

评卷人

 

已知有三个居民小区ABC构成△ABCAB700BC 800AC300.现计划在与ABC三个小区距离相等处建造一个工厂,为不影响小区居民的正常生活和休息,需在厂房的四周安装隔音窗或建造隔音墙.据测算,从厂房发出的噪音是85分贝,而维持居民正常生活和休息时的噪音不得超过50分贝.每安装一道隔音窗噪音降低3分贝,成本3万元,隔音窗不能超过3道;每建造一堵隔音墙噪音降低15分贝,成本10万元;距离厂房平均每25噪音均匀降低1分贝.

1)求∠C的大小;

  2)求加工厂与小区A的距离.(精确到1);

3)为了不影响小区居民的正常生活和休息且花费成本最低,需要安装几道隔音窗,建造几堵隔音墙?

计算时厂房和小区的大小忽略不计


评卷人

 

20.(本小题满分12分)

如图所示的等腰梯形ABCD中,上底和高均为2,下底边长为22DEABECFABF,将△AED、△BFC分别沿DECF折起,使AB重合于P得图形②.在空间图形②中:

1)求证:FP⊥平面PDE

2)求EF与面PDF所成的角的大小.


21.(本小题满分13分)

评卷人

 

已知等比数列{an}中,a164,公比q1a2a3a4又分别是某等差数列的第7项、第3项、第1项.

1)求等比数列{an}的通项公式an

2)设bnlog2an,求数列{bn}的前n项和.


22.(本小题满分13分)

评卷人

 

如图,已知过点D(-20)的直线l 与椭圆y21交于不同的两点AB,点M是弦AB的中点.

1)若,求点P的轨迹方程;

2)求的取值范围.


 钦州市2006年高三毕业班第一次调研测试

理科数学参考答案及评分标准

说明:

1、如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.

2、对计算题,当考生的解答在某一步出错时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.

3、解答右端所注分数表示考生正确做到这一步应得的累加分数.

4、只给整数分.选择题和填空题不给中间分.

一、选择题:(每小题5分,共60分)

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

B

B

C

B

C

C

B

C

D

C

B

二、填空题:(每小题4分,共16分)

13     142      15         16.(42a2

三、解答题:

17.解:设扇形的半径为R,弧长为l,面积为S

c=2Rl,∴R,(lc).·················································································· 2

SRl×·lcll2)·········································································· 6

=-l2cl)=-,································································ 8

∴当l时,Smax.··································································································· 11

答:当扇形的弧长为时,扇形有最大面积,面积的最大值是.············· 12


18.解:1)易知选出的3位同学中,没有选到一位男同学的概率是·············· 4

选出的3位同学中,至少有一位男同学的概率P1···· 6

2)除女同学甲和男同学乙同时被选中外还有另外的8个同学中有一位同学的概率是   10

每位女同学能通过测试的概率均为

每位男同学能通过测试的概率均为

10位同学中的女同学甲和男同学乙同时被选中且通过测试的概率

P××····················································································· 12

19.解:(1)由余弦定理得cosC,∠C60º······························································· 3

2)由题设知,所求距离为ABC外接圆半径R················································· 4

由正弦定理得R404·········································································· 6

答:加工厂与小区A的距离约为404···························································· 7

3)设需要安装x道隔音窗,建造y堵隔音墙,总成本为S万元,由题意得:

····················································· 9

其中S3x10yx2y1时,S最小值为16万元.····················· 11

答:需安装2道隔音窗,建造1堵隔音墙即可.··········································· 12


20解法一:

1)在等腰梯形ABCD中,EFDC2AEBF·········································· 1

AEPEBFPF,∴PE2FP2EF2,∴PFEP···································· 2

又∵AEDE(即PEDE),EFDE,∴DE⊥面PEF·································· 4

DEFP,∴FP⊥面PDE···························································································· 6

2)由(1)得FP⊥面PDE,∴面FPD⊥面PDE························· 7

EMDPM,则EM⊥面PDF················································ 8

连结FM,则∠EFMEF与面PDF所成的角.························ 9

PED中,可得,EM,························ 10

∴sinEFM,∴∠EFM=arcsin.························ 11

EF与面PDF所成的角的大小为arcsin.····················································· 12

解法二:

1)以E为坐标原点,建立如图所示的空间直角坐标系Exyz························· 1

则依题意得D002),C022),F020),P110),· 2

=(1,-10),0,0,2),=(-1,-1,2).·········· 3

·1,-10·(0,0,2)=0··························· 4

·1,-10·(-1,-1,2

=-1+1+0=0,································································ 5

FPEDFPPD,∴FP⊥平面PDE······························ 6

2)设面PDF的法向量=(xyz),则

············································· 8

y2,则=(222).······························································································ 9

EF与面PDF所成的角为,则·sin················· 10

sin=arcsin.····························· 11

EF与面PDF所成的角的大小为arcsin.······················································· 12


21.解:1·············································· 2

2q23q10,∴q··························································································· 4

an2························································································································· 6

2bnlog2anlog227n····················································································· 8

1n7时,

b1b2+…+bnb1b2+…+bn13nn2;······················· 10

n8时,

b1b2+…+bn=(b1b2+…+b7)-(b8b9+…+bn····· 11

2b1b2+…+b7)-(b1b2+…+bn····· 12

4213nn2).····················································· 13

22.解:1设直线l的方程为ykx2),Pxy),Ax1y1),Bx2y2 1

得:(12k2x28k2x8k220··································· 3

∴△=64k4412k2)(8k22)>0,∴0k2······························ 4

xx1x2=-yy1y2kx1x24)=········ 5

消去k得:x22y24x0························································································ 6

x=-=-4

P的轨迹方程为:x22y24x0,(-2x0······························ 7

2····································· 9

··············································· 11

0k2,∴································································· 13