1.椭圆的中心是原点O,它的短轴长为,相应于焦点()的准线与x轴相交于点,,过点的直线与椭圆相交于、两点。
(1)求椭圆的方程及离心率;
(2)若,求直线的方程;
(3)设(),过点且平行于准线的直线与椭圆相交于另一点,证明. (14分)
2. 已知函数对任意实数x都有,且当时,。
(1) 时,求的表达式。
(2) 证明是偶函数。
(3) 试问方程是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由。当
3.(本题满分12分)如图,已知点F(0,1),直线L:y=-2,及圆C:。
(1) 若动点M到点F的距离比它到直线L的距离小1,求动点M的轨迹E的方程;
(2) 过点F的直线g交轨迹E于G(x1,y1)、H(x2,y2)两点,求证:x1x2 为定值;
(3) 过轨迹E上一点P作圆C的切线,切点为A、B,要使四边形PACB的面积S最小,求点P的坐标及S的最小值。
4.以椭圆=1(a>1)短轴一端点为直角顶点,作椭圆内接等腰直角三角形,试判断并推证能作出多少个符合条件的三角形.
5 已知,二次函数f(x)=ax2+bx+c及一次函数g(x)=-bx,其中a、b、c∈R,a>b>c,a+b+c=0.
(Ⅰ)求证:f(x)及g(x)两函数图象相交于相异两点;
(Ⅱ)设f(x)、g(x)两图象交于A、B两点,当AB线段在x轴上射影为A1B1时,试求A1B1的取值范围.
6 已知过函数f(x)=的图象上一点B(1,b)的切线的斜率为-3。
(1) 求a、b的值;
(2) 求A的取值范围,使不等式f(x)≤A-1987对于x∈[-1,4]恒成立;
(3) 令。是否存在一个实数t,使得当时,g(x)有最大值1?
7 已知两点M(-2,0),N(2,0),动点P在y轴上的射影为H,︱︱是2和的等比中项。
(1) 求动点P的轨迹方程,并指出方程所表示的曲线;
(2) 若以点M、N为焦点的双曲线C过直线x+y=1上的点Q,求实轴最长的双曲线C的方程。
8.已知数列{an}满足
(1)求数列{bn}的通项公式;
(2)设数列{bn}的前项和为Sn,试比较Sn与的大小,并证明你的结论.
9.已知焦点在轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点为圆心,1为半径的圆相切,又知C的一个焦点与A关于直线对称.
(Ⅰ)求双曲线C的方程;
(Ⅱ)设直线与双曲线C的左支交于A,B两点,另一直线经过M(-2,0)及AB的中点,求直线在轴上的截距b的取值范围;
(Ⅲ)若Q是双曲线C上的任一点,为双曲线C的左,右两个焦点,从引的平分线的垂线,垂足为N,试求点N的轨迹方程.
10. 对任意都有
(Ⅰ)求和的值.
(Ⅱ)数列满足:=+,数列是等差数列吗?请给予证明;
(Ⅲ)令
试比较与的大小.
11. :如图,设OA、OB是过抛物线y2=2px顶点O的两条弦,且=0,求以OA、OB为直径的两圆的另一个交点P的轨迹.(13分)
12.知函数f(x)=log3(x2-2mx+2m2+)的定义域为R
(1)求实数m的取值集合M;
(2)求证:对m∈M所确定的所有函数f(x)中,其函数值最小的一个是2,并求使函数值等于2的m的值和x的值.
13.设关于x的方程2x2-tx-2=0的两根为函数f(x)=
(1). 求f(的值。
(2)。证明:f(x)在[上是增函数。
(3)。对任意正数x1、x2,求证:
14.已知数列{an}各项均为正数,Sn为其前n项的和.对于任意的,都有.
I、求数列的通项公式.
II、若对于任意的恒成立,求实数的最大值.
15.( 12分)已知点H(-3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上,且满足·=0,=-,
(1)当点P在y轴上移动时,求点M的轨迹C;
(2)过点T(-1,0)作直线l与轨迹C交于A、B两点,若在x轴上存在一点E(x0,0),使得△ABE为等边三角形,求x0的值.
16.(14分)设f1(x)=,定义fn+1 (x)=f1[fn(x)],an=,其中n∈N*.
(1) 求数列{an}的通项公式;
(2)若T2n=a1+2a2+3a3+…+2na2n,Qn=,其中n∈N*,试比较9T2n与Qn的大小.
17. 已知=(x,0),=(1,y),(+)(–).
(I) 求点(x,y)的轨迹C的方程;
(II) 若直线L:y=kx+m(m0)与曲线C交于A、B两点,D(0,–1),且有 AD=BD,试求m的取值范围.
18.已知函数对任意实数p、q都满足
(1)当时,求的表达式;
(2)设求证:
(3)设试比较与6的大小.
19.已知函数若数列:…,
成等差数列.
(1)求数列的通项;
(2)若的前n项和为Sn,求;
(3)若,对任意,求实数t的取值范围.
20.已知△OFQ的面积为
(1)设正切值的取值范围;
(2)设以O为中心,F为焦点的双曲线经过点Q(如图),,
当取得最小值时,求此双曲线的方程.
(3)设F1为(2)中所求双曲线的左焦点,若A、B分别为此双曲线渐近线l1、l2上的动
|
21、已知函数是偶函数,是奇函数,正数数列满足
① 求的通项公式;
②若的前项和为,求.
22、直角梯形ABCD中∠DAB=90°,AD∥BC,AB=2,AD=,BC=.椭圆C以A、B为焦点且经过点D.
(1)建立适当坐标系,求椭圆C的方程;
(2)若点E满足,问是否存在不平行AB的直线l与椭圆C交于M、N两点且,若存在,求出直线l与AB夹角的范围,若不存在,说明理由.
23、.设函数
(1)求证:对一切为定值;
(2)记求数列的通项公式及前n项和.
24. 已知函数是定义在R上的偶函数.当X0时, =.
(I) 求当X<0时, 的解析式;
(II) 试确定函数= (X0)在的单调性,并证明你的结论.
(III) 若且,证明:-<2.
25、已知抛物线的准线与轴交于点,过作直线与抛物线交于A、B两点,若线段AB的垂直平分线与X轴交于D(X0,0)
⑴求X0的取值范围。
⑵△ABD能否是正三角形?若能求出X0的值,若不能,说明理由。
26、已知□ABCD,A(-2,0),B(2,0),且∣AD∣=2
⑴求□ABCD对角线交点E的轨迹方程。
⑵过A作直线交以A、B为焦点的椭圆于M、N两点,且∣MN∣=,MN的中点到Y轴的距离为,求椭圆的方程。
⑶与E点轨迹相切的直线l交椭圆于P、Q两点,求∣PQ∣的最大值及此时l的方程。
27.(14分)(理)已知椭圆,直线l过点A(-a,0)和点B(a,ta)
(t>0)交椭圆于M.直线MO交椭圆于N.(1)用a,t表示△AMN的面积S;
(2)若t∈[1,2],a为定值,求S的最大值.
28.已知函数f(x)= 的图象过原点,且关于点(-1,1)成中心对称.
(1)求函数f(x)的解析式;
(2)若数列{an}(n∈N*)满足:an>0,a1=1,an+1= [f()]2,求数列{an}的通项公式an,并证明你的结论.
30、已知点集其中点列在中,为与轴的交点,等差数列的公差为1,。
(1)求数列,的通项公式;
(2)若求;
(3)若是否存在使得若存在,求出的值;若不存在,请说明理由。
21.经过抛物线的焦点F的直线与该抛物线交于、两点. (12分)
(1)若线段的中点为,直线的斜率为,试求点的坐标,并求点的轨迹方程
(2)若直线的斜率,且点到直线的距离为,试确定的取值范围.
1(1)解:由题意,可设椭圆的方程为。
由已知得解得
所以椭圆的方程为,离心率。
(2)解:由(1)可得A(3,0)。
设直线PQ的方程为。由方程组
得,依题意,得。
设,则, ① 。 ②
由直线PQ的方程得。于是
。 ③
∵,∴。 ④
由①②③④得,从而。
所以直线PQ的方程为或
(3,理工类考生做)证明:。由已知得方程组
注意,解得
因,故
。
而,所以。
2 ①f(x)= (2k≦x≦2k+2, k∈Z) ②略 ⑶方程在[1,4]上有4个实根
3 ①x2=4y ②x1x2=-4 ⑶P(±2,1) SMIN=
4 .解:因a>1,不防设短轴一端点为B(0,1)
设BC∶y=kx+1(k>0)
则AB∶y=-x+1
把BC方程代入椭圆,
是(1+a2k2)x2+2a2kx=0
∴BC=,同理AB=
由AB=BC,得k3-a2k2+ka2-1=0
(k-1)[k2+(1-a2)k+1]=0
∴k=1或k2+(1-a2)k+1=0
当k2+(1-a2)k+1=0时,Δ=(a2-1)2-4
由Δ<0,得1<a<
由Δ=0,得a=,此时,k=1
故,由Δ≤0,即1<a≤时有一解
由Δ>0即a>时有三解
5 解:依题意,知a、b≠0
∵a>b>c且a+b+c=0
∴a>0且c<0
(Ⅰ)令f(x)=g(x),
得ax2+2bx+c=0.(*)
Δ=4(b2-ac)
∵a>0,c<0,∴ac<0,∴Δ>0
∴f(x)、g(x)相交于相异两点
(Ⅱ)设x1、x2为交点A、B之横坐标
则A1B12=x1-x22,由方程(*),知
A1B12=
∵,而a>0,∴
∵,∴
∴
∴4[()2++1]∈(3,12)
∴A1B1∈(,2)
6、解:(1)=
依题意得k==3+2a=-3, ∴a=-3
,把B(1,b)代入得b=
∴a=-3,b=-1
(2)令=3x2-6x=0得x=0或x=2
∵f(0)=1,f(2)=23-3×22+1=-3
f(-1)=-3,f(4)=17
∴x∈[-1,4],-3≤f(x)≤17
要使f(x)≤A-1987对于x∈[-1,4]恒成立,则f(x)的最大值17≤A-1987
∴A≥2004。
(1) 已知g(x)=-
∴
∵0<x≤1,∴-3≤-3x2<0,
① 当t>3时,t-3x2>0,
∴g(x)在上为增函数,
g(x)的最大值g(1)=t-1=1,得t=2(不合题意,舍去)
② 当0≤t≤3时,
令=0,得x=
列表如下:
x | (0, ) |
|
|
| + | 0 | - |
g(x) | ↗ | 极大值 | ↘ |
g(x)在x=处取最大值-+t=1
∴t==<3
∴x=<1
③当t<0时,<0,∴g(x)在上为减函数,
∴g(x)在上为增函数,
∴存在一个a=,使g(x)在上有最大值1。
7、解:(1)设动点的坐标为P(x,y),则H(0,y),,=(-2-x,-y)
=(2-x,-y)
∴·=(-2-x,-y)·(2-x,-y)=
由题意得∣PH∣2=2··
即
即,所求点P的轨迹为椭圆
(2)由已知求得N(2,0)关于直线x+y=1的对称点E(1,-1),则∣QE∣=∣QN∣
双曲线的C实轴长2a=(当且仅当Q、E、M共线时取“=”),此时,实轴长2a最大为
所以,双曲线C的实半轴长a=
又
∴双曲线C的方程式为
8.(1)
(2)
9.解:(Ⅰ)设双曲线C的渐近线方程为y=kx,则kx-y=0
∵该直线与圆相切,
∴双曲线C的两条渐近线方程为y=±x.…………………………………………2分
故设双曲线C的方程为.
又双曲线C的一个焦点为
∴,.
∴双曲线C的方程为.………………………………………………4分
(Ⅱ)由得.
令
直线与双曲线左支交于两点,等价于方程f(x)=0在上有两个不等实根.
因此 解得.
又AB中点为,
∴直线l的方程为.………………………………6分
令x=0,得.
∵,
∴
∴.………………………………………………8分
(Ⅲ)若Q在双曲线的右支上,则延长到T,使,
若Q在双曲线的左支上,则在上取一点T,使.
根据双曲线的定义,所以点T在以为圆心,2为半径的圆上,即点T的轨迹方程是
①…………………………………………10分
由于点N是线段的中点,设,.
则,即.
代入①并整理得点N的轨迹方程为.………………12分
10 解:(Ⅰ)因为.所以.……2分
令,得,即.……………4分
(Ⅱ)
又………………5分
两式相加
.
所以,………………7分
又.故数列是等差数列.………………9分
(Ⅲ)
………………10分
………………12分
所以……………………………………………………………………14分
11.设直线OA的斜率为k,显然k存在且不等于0
则OA的方程为y=kx
由解得A() ……4分
又由,知OA⊥OB,所以OB的方程为y=-x
由解得B(2pk2,-2pk) ……4分
从而OA的中点为A'(),OB的中点为B'(pk2,-pk) ……6分
所以,以OA、OB为直径的圆的方程分别为
x2+y2-=0
……①
x2+y2-2pk2x+2pky=0
……② ……10分
∵P(x,y)是异于O点的两圆交点,所以x≠0,y≠0
由①-②并化简得y=(k-)x
……③
将③代入①,并化简得x(k2+-1)=2p ……④
由③④消去k,有x2+y2-2px=0
∴点P的轨迹为以(p,0)为圆心,p为半径的圆(除去原点). ……13分
12.(1)由题意,有x2-2mx+2m2+>0对任意的x∈R恒成立
所以△=4m2-4(2m2+)<0
即-m2-<0
∴>0
由于分子恒大于0,只需m2-3>0即可
所以m<-或m>
∴M={mm<-或m>} ……4分
(2)x2-2mx+2m2+=(x-m)2+m2+≥m2+
当且仅当x=m时等号成立.
所以,题设对数函数的真数的最小值为m2+ ……7分
又因为以3为底的对数函数为增函数
∴f(x)≥log3(m2+)
∴当且仅当x=m(m∈M)时,f(x)有最小值为log3(m2+) ……10分
又当m∈M时,m2-3>0
∴m2+=m2-3++3≥2+3=9
当且仅当m2-3=,即m=±时,
log3(m2+)有最小值log3(6+)=log39=2
∴当x=m=±时,其函数有最小值2.
13.解析:(1)。,由根与系数的关系得,
同法得f(
(2).证明:f/(x)=而当x时,
2x2-tx-2=2(x-故当x时, f/(x)≥0,
函数f(x)在[上是增函数。
(3)。证明:
, 同理.
又f(两式相加得:
即
而由(1),f( 且f(,
.
14(I)当时,,
,又{an}各项均为正数,.数列是等差数列,
(II) ,若对于任意的恒成立,则.令,.当时,.又,. 的最大值是.
15.(1)设点M的坐标为(x,y),由=-,得P(0,-),Q(,0), 2分
由·=0,得(3,-)(x,)=0,又得y2=4x, 5分
由点Q在x轴的正半轴上,得x>0,
所以,动点M的轨迹C是以(0,0)为顶点,以(1,0)为焦点的抛物线,除去原点. 6分
(2)设直线l:y=k(x+1),其中k≠0,代入y2=4x,得k2x2+2(k2-2)x+k2=0,① 7分
设A(x1,y1),B(x2,y2),
则x1,x2是方程①的两个实根,∴x1+x2=-,x1x2=1,
所以,线段AB的中点坐标为(,), 8分
线段AB的垂直平分线方程为y-=-(x-), 9分
令y=0,x0=+1,所以点E的坐标为(+1,0)
因为△ABE为正三角形,所以点E(+1,0)到直线AB的距离等于|AB|,
而|AB|==·, 10分
所以,=, 11分
解得k=±,得x0=. 12分
16.(1)f1(0)=2,a1==,fn+1(0)=f1[fn(0)]=,
an+1====-=-an, 4分
∴数列{an}是首项为,公比为-的等比数列,∴an=(-)n-1. 6分
(2)T2n=a1+2a2+3a3+…+(2n-1)a2n-1+2na2n,
-T2n=(-a1)+(-)2a2+(-)3a3+…+(-)(2n-1)a2n-1+(-)·2na2n
=a2+2a3+…+(2n-1)a2n-na2n, 8分
两式相减得T2n=a1+a2+a3+…+a2n+na2n,
所以,T2n=+n×(-)2n-1=-(-)2n+(-)2n-1, 10分
T2n=-(-)2n+(-)2n-1=(1-). ∴9T2n=1-,
Qn=1-, 12分
当n=1时,22n=4,(2n+1)2=9,∴9T2n<Qn;
当n=2时,22n=16,(2n+1)2=25,∴9T2n<Qn; 13分
当n≥3时,22n=[(1+1)n]2
=(C+C+C+…+C)2>(2n+1)2,∴9T2n>Qn. 14分
17.解(I)+=(x,0)+(1,y)=(x+, y),
–=(x, 0)(1,y)= (x,– y).(+)(),
(+)·()=0, (x+)( x)+y·(y)=0,
故P点的轨迹方程为. (6分)
(II)考虑方程组 消去y,得(1–3k2)x2-6kmx-3m2-3=0 (*)
显然1-3k20, =(6km)2-4(1-3k2)( -3m2-3)=12(m2+1-3k2)>0.
设x1,x2为方程*的两根,则x1+x2=,x0=, y0=kx0+m=,
故AB中点M的坐标为(,),
线段AB的垂直平分线方程为y=(),
将D(0,–1)坐标代入,化简得 4m=3k21,
故m、k满足 消去k2得 m24m>0, 解得 m<0或m>4.
又4m=3k21>1, 故m(,0)(4,+). (12分)
18.(1)解 由已知得
. (4分)
(2)证明 由(1)可 知 设
则
.
两式相减得+…+
. (9分)
(3)解 由(1)可知
则 =
故有 =6. (14分)
19.(1)
(2)
(3)
为递增数列 中最小项为
20.(1)
(2)设所求的双曲线方程为
又由
当且仅当c=4时,最小,此时Q的坐标为
所求方程为
(3)设 的方程为的方程为 则有①
②
③ 设由①②得
,
代入③得 的轨迹为
焦点在y轴上的椭圆.
21、解:(1)为偶函数
为奇函数
是以为首项,公比为的等比数列.
(2)
22、解析:(1)如图,以AB所在直线为x轴,AB中垂线为y轴建立直角坐标系,A(-1,0),B(1,0)
设椭圆方程为:
令 ∴
∴ 椭圆C的方程是:
(2),,l⊥AB时不符,
设l:y=kx+m(k≠0)
由
M、N存在
设M(,),N(,),MN的中点F(,)
∴ ,
∴ ∴ ∴ ∴且
∴ l与AB的夹角的范围是,.
23、(1)
24、(1)当X<0时, (3分)
(2)函数= (X0)在是增函数;(证明略) (9分)
(3)因为函数= (X0)在是增函数,由x得;
又因为,所以,所以;
因为,所以,且,即,
所以,-2≤f(x1) – f(x2) ≤2即-<2. (14分)
25、解:⑴由题意易得M(-1,0)
设过点M的直线方程为代入得
………………………………………(1)
再设A(x1,y1),B(x2,y2)
则x1+x2=,x1·x2=1
y1+y2=k(x1+1)+k(x2+1)=k(x1+x2)+2k=
∴AB的中点坐标为()
那么线段AB的垂直平分线方程为,令得
,即
又方程(1)中△=
⑵若△ABD是正三角形,则需点D到AB的距离等于
点到AB的距离d=
据得:
∴,∴,满足
∴△ABD可以为正△,此时
26、解:⑴设E(x,y),D(x0,y0)
∵ABCD是平行四边形,∴,
∴(4,0)+(x0+2,y0)=2(x+2,y)∴(x0+6,y0)=(2x+4,2y)
∴
又
即:
∴□ABCD对角线交点E的轨迹方程为
⑵设过A的直线方程为
以A、B为焦点的椭圆的焦距2C=4,则C=2
设椭圆方程为 , 即…………………(*)
将代入(*)得
即
设M(x1,y1),N(x2,y2)则
∵MN中点到Y轴的距离为,且MN过点A,而点A在Y轴的左侧,∴MN中点也在Y轴的左侧。
∴,∴
∴
∵ ∴
∴ 即
∴ ∴
∴ ,
,∵ ,∴
∴
∴所求椭圆方程为
⑶由⑴可知点E的轨迹是圆
设是圆上的任一点,则过点的切线方程是
①当时,代入椭圆方程得:
,又
∴
∴
=
令
则 , ∵
∴当t=15时, 取最大值为15 ,的最大值为。
此时 ,∴直线l的方程为
②当时,容易求得
故:所求的最大值为,此时l的方程为
27.解(理)(1)易得l的方程为…1分 由,得(a2t2+4)y2-4aty=0…2分
解得y=0或 即点M的纵坐标………………4分
S=S△AMN=2S△AOM=OA·yM=…7分 (2)由(1)得,
令…………9分 由
当时,…10分 若1≤a≤2,则,故当时,Smax=a11分
若a>2,则在[1,2]上递增,进而S(t)为减函数. ∴当t=1时,13分
综上可得…………14分
28. (1) ∵函数f(x)= 的图象过原点,即f(0)=0,∴c =0,∴f(x)= .
又函数f(x)= = b - 的图象关于点(-1,1)成中心对称,∴a=1,b=1,∴f(x)= .(2)由题意有an+1=[ ]2,即 = ,即 = +1,∴ - =1.
∴数列{}是以1为首项,1为公差的等差数列. ∴ =1+(n-1)=n,即 = ,∴an= .∴a2= ,a3= ,a4= ,an= .
29、解:(1)由,得 …………2分
,则
…………4分
(2)当时,,
…………6分
…………8分
(3)假设存在符合条件的使命题成立
当是偶数时,是奇数,则
由得 …………11分
当是奇数时,是偶数,则
由得无解
综上存在,使得 …………14分
30.解:(1)设,,直线AB的方程为:
把代入得:
∴∴
∴∴点M的坐标为;
消去可得点M的轨迹方程为:;
(2)∵
∴∴∴
∵∴,∴∴
∴或∴或
∴∴的取值范围为。