高考数学第一轮复习测试——集合和简易逻辑

2014-5-11 0:13:03 下载本试卷

高考数学第一轮复习测试——集合和简易逻辑

说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分;答题时间120分钟.

第I卷(共40分)

一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,有且只有一项是符合题目要求的)

1.设集合A = {1,2},B = {1,2,3},C = {2,3,4},则(AB)∪C =      (  )

    A.{1,2,3}     B.{1,2,4}   C.{2,3,4}    D.{1,2,3,4}

2.若命题pxAB,则Øp是                                      (  )

    A.x ÏAx ÏB                   B.x ÏAx ÏB

    C.x ÏAB                       D.x ÎAB

3.定义A - B = {x xÎAxÏB},若M={1,2,3,4,5},N={2,3,6},则N - M等于(  )

    A.M            B.N            C.{1,4,5}     D.{6}

4.“△ABC中,若∠C=90°,则∠A、∠B都是锐角”的否命题为            (  )

  A.△ABC中,若∠C≠90°,则∠A、∠B都不是锐角

  B.△ABC中,若∠C≠90°,则∠A、∠B不都是锐角

  C.△ABC中,若∠C≠90°,则∠A、∠B都不一定是锐角

  D.以上都不对

5.设I为全集,I的三个非空子集,且,则下面论断正确的是                                             (  )

A.         B.

C.     D.

6.“若一个数不是负数,则它的平方不是正数.”和这个命题真值相同的命题为   (  )

  A.“若一个数是负数,则它的平方是正数.”

  B.“若一个数的平方不是正数,则它不是负数.”

    C.“若一个数的平方是正数,则它是负数.”

    D.“若一个数不是负数,则它的平方是非负数.”

7.若非空集S{1,2,3,4,5},且若a∈S,必有(6-a)∈S,则所有满足上述条件的集合S共有                                 (   )

   A.6个       B.7个      C.8个         D.9 个

8.命题“若△ABC不是等腰三角形,则它的任何两个内角不相等.”的逆否命题是(  )

  A.“若△ABC是等腰三角形,则它的任何两个内角相等”

  B.“若△ABC任何两个内角不相等,则它不是等腰三角形”

  C.“若△ABC有两个内角相等,则它是等腰三角形”

D.“若△ABC任何两个角相等,则它是等腰三角形”

第Ⅱ卷(非选择题,共110分)

二、填空题(本大题共6小题,每小题5分,共30分把答案填在题中横线上)

9.命题“若”的否命题为         

10.用“充分、必要、充要”填空:

  ①p或q为真命题是p且q为真命题的______条件.

  ②非p为假命题是p或q为真命题的______条件.

  ③A:x-2 <3, B:x2-4x-15<0, 则A是B的_____条件;

11.已知集合,则      

12.设集合A= {xx2+x-6=0},B={xmx+1= 0},则B是A的真子集的一个充分不必要的条件是___      ____.

13.已知集合A=-1,3,2-1,集合B=3,.若BA,则实数=    .

14.定义集合运算:AB={z z= xy(x+y),zAyB},设集合A={0,1},B={2,3},则集合AB的所有元素之和为     

三、解答题(共6小题,共80分)

15.(本小题满分12分) 设集合

(1) 若,求实数a的取值范围;

(2) 若,求实数a的值.

16.(本小题满分13分)已知 若Øp是Øq的必要非充分条件,求实数的取值范围.

17.(本小题满分13分)

已知全集为R

18.(本小题满分14分) 设,点,但,求的值.

19.(本小题满分14分) 已知A={x -2 £ x £ a},B={y y = 2x + 3,xÎA},M={z z = x2x ÎA},且MÍ B,求实数a的取值范围.

20.(本题满分14分)本题共有3个小题,第1小题满分4分,第2小题满分5分,第3小题满分5分.

已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,对任意x∈R,有f(x+T) =Tf(x)成立.

  (1) 函数f(x)= x 是否属于集合M?说明理由;

  (2) 设函数f(x)=ax(a>0,且a≠1)的图象与y=x的图象有公共点,证明:

    f(x)=ax∈M;

  (3) 若函数f(x)=sinkx∈M,求实数k的取值范围.

高三数学同步测试参考答案

一、选择题

题号

1

2

3

4

5

6

7

8

答案

D

A

D

B

A

C

B

C

二、填空题

9.若,则;  10.必要、充分、充要; 

11.;    12. m=(也可为);

13.1      14.18

三、解答题

15.解:

(1)∵,∴a≥3;

(2) ∵,∴a=0.

16.分析:先明确,再由  ,寻求应满足的等价条件组.

解:由,得

*=

,得

*

       的必要非充分条件,且* AB.

    即

注意到当时,(3)中等号成立,而(2)中等号不成立.*的取值范围是

点评:分析题意,实现条件关系与集合关系的相互转化是求解本题的关键.

17.解:由已知   所以

解得, 所以

  解得

所以  于是

18.解:∵点(2,1),∴

∵(1,0)E,(3,2)E, ∴② 

由①②得

类似地由①、③得,  ∴

ab,∴a= -1代入①、②得b= -1.

19.解:∵B={y y = 2x + 3,xÎA},A={x -2 £ x £ a},

∴- 1 £ 2x + 3 £ 2a + 3,即B={y- 1 £ y £ 2a + 3},

又M={z z = x2x ÎA}.

∴(1) 当- 2 £ a <0时,M={za2 £ z £ 4},

∵MÍ B,∴4 £ 2a + 3,即a ³,不合条件,舍;

(2) 当0£ a £ 2时,M={z0 £ z £ 4},

∵MÍ B,∴4 £ 2a + 3,即a ³

£ a £ 2;

(3) 当a > 2时,M={z0 £ z £ a2},

∵MÍ B,∴a2 £ 2a + 3,即- 1 £ a £ 3,

∴2 < a £ 3.

综上,有a的取值范围为£ a £ 3.

评析:本题主要考查分类讨论与数形结合的思想方法,这是高中数学中常用的两种方法.

20.解:(1)对于非零常数T,f(x+T)=x+T, Tf(x)=Tx. 因为对任意x∈R,x+T= Tx不能恒成

立,所以f(x)=

(2)因为函数f(x)=ax(a>0且a≠1)的图象与函数y=x的图象有公共点,

所以方程组:有解,消去y得ax=x

显然x=0不是方程ax=x的解,所以存在非零常数T,使aT=T.

于是对于f(x)=axf(x)=ax∈M.

(3)当k = 0时,f(x)=0,显然f(x)=0∈M.

k ¹ 0时,因为f(x)=sinkx∈M,所以存在非零常数T,对任意x∈R,有

f(x+T) = Tf(x)成立,即sin(kx+kT) = Tsinkx

因为k ¹ 0,且x∈R,所以kx∈R,kx+kT∈R,

于是sinkx ∈[- 1,1],sin(kx+kT) ∈[- 1,1],

故要使sin(kx+kT)=Tsinkx成立,

只有T=,当T=1时,sin(kx+k) = sinkx成立,则k=2mpm∈Z.

当T= - 1时,sin(kx - k) = - sinkx 成立,

即sin(kx - k+p)= sinkx 成立,

则- k+p =2mpm∈Z ,即k= - 2(m - 1)pm∈Z.

综合得,实数k的取值范围是{kk= mpm∈Z}.