桂山中学高中数学必修3第一章(统计)检测题

2014-5-11 0:18:37 下载本试卷

高中数学必修3检测题

2004学年第二学期

高中数学必修3第一章(统计)检测题

班级       姓名       学号       

一、选择题:(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)

   1.某单位有老年人28人,中年人54人,青年人81人.为了调查他们的身体状况,需从他们中抽取一个容量为36的样本,最适合抽取样本的方法是(  ).

A.简单随机抽样          B.系统抽样

C.分层抽样            D.先从老年人中剔除一人,然后分层抽样

   2.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a,中位数为b,众数为c,则有(  ).

   A.a>b>c     B.b>c>a     C.c>a>b      D.c>b>a

   3.下列说法错误的是(  ).

   A.在统计里,把所需考察对象的全体叫作总体

   B.一组数据的平均数一定大于这组数据中的每个数据

   C.平均数、众数与中位数从不同的角度描述了一组数据的集中趋势

   D.一组数据的方差越大,说明这组数据的波动越大

   4.下列说法中,正确的是(  ).

   A.数据5,4,4,3,5,2的众数是4

   B.一组数据的标准差是这组数据的方差的平方

   C.数据2,3,4,5的标准差是数据4,6,8,10的标准差的一半

   D.频率分布直方图中各小长方形的面积等于相应各组的频数

   5.从甲、乙两班分别任意抽出10名学生进行英语口语测验,其测验成绩的方差分别为S12= 13.2,S22=26.26,则(  ).

   A.甲班10名学生的成绩比乙班10名学生的成绩整齐

   B.乙班10名学生的成绩比甲班10名学生的成绩整齐

   C.甲、乙两班10名学生的成绩一样整齐

   D.不能比较甲、乙两班10名学生成绩的整齐程度

   6.下列说法正确的是(  ).

   A.根据样本估计总体,其误差与所选择的样本容量无关

   B.方差和标准差具有相同的单位

   C.从总体中可以抽取不同的几个样本

   D.如果容量相同的两个样本的方差满足S12<S22,那么推得总体也满足S12<S22是错的

   7.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输人为15,那么由此求出的平均数与实际平均数的差是(  ).

   A.3.5     B.-3       C.3         D.-0.5

   8.在一次数学测验中,某小组14名学生分别与全班的平均分85分的差是:2,3,-3,-5,12,12,8,2,-1,4,-10,-2,5,5,那么这个小组的平均分是(  )分.

A.97.2    B.87.29      C.92.32       D.82.86

9.某题的得分情况如下:其中众数是(  ).

得分/分

0

1

2

3

4

百分率/(%)

37.0

8.6

  6.0

28.2

  20.2

A.37.0%    B.20.2%     C.0分         D.4分

10.如果一组数中每个数减去同一个非零常数,则这一组数的(  ).

A.平均数不变,方差不变        B.平均数改变,方差改变

C.平均数不变,方差改变        D.平均数改变,方差不变

二、填空题:(本题共4小题,每小题3分,共12分,请把答案填写在答题纸上)

11.一个公司共有240名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为20的样本.已知某部门有60名员工,那么从这一部门抽取的员工人数是   

  12.常用的统计图表有:                 

13.常用的抽样方法有:                 

14.(2002年新课程卷文第13题)据新华社

2002年3月12日电,1985年~2000年我   25.0

国农村人均居住面积如图所示,其中,从   20.0

   年到   年的五年间增长最快.   15.0

                          1985 1990 1995 2000

                        

三、解答题:(本题共6小题,共58分,解答应写出文字说明,证明过程或演算步骤.)

15.(6分)某展览馆22天中每天进馆参观的人数如下:

   180  158  170  185  189  180  184  185  140  179  192

   185  190  165  182  170  190  183  175  180  185  148

  计算参观人数的中位数、众数、平均数、标准差.

【解】:

16.(7分)在相同条件下对自行车运动员甲、乙两人进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:

 甲

27

38

30

37

35

31

 乙

33

29

38

34

28

36

试判断选谁参加某项重大比赛更合适

【解】:

17.(12分)为了解某地初三年级男生的身高情况,从其中的一个学校选取容量为60的样本(60名男生的身高),分组情况如下:

分组

147.5~155.5

155.5~163.5

163.5~171.5

171.5~179.5

频数

6

2l

m

频率

a

0.1

(1)求出表中a,m的值.      (2)画出频率分布直方图和频率折线图

【解】:

18.(8分) 某赛季甲、乙两名篮球运动员每场得分情况如下:

甲的得分:12 15  24  25 3l  31 36 36  37 39  44  49  50

乙的得分:8 13  14 16  23  26  28  33  38  39  51

请你用不同的方式(统计图表)分别表示此赛季甲、乙两名篮球运动员得分情况.

【解】:

19.(15分)某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表

商店名称

A

B

C

D

E

E

销售额(x)/千万元

3

5

6

7

9

9

利润额(y)/百万元

2

3

3

4

5

(1)画出销售额和利润额的散点图.(2)若销售额和利润额具有相关关系,用最小二乘法计算利润额y对销售额x的回归直线方程.(3)对计算结果进行简要的分析说明.

【解】:

20.(10分)回答下列问题:

(1)如果数据x1,x2,…,xn的平均数是,那么(x1-)+( x2-)+…+(xn-)=0总成立吗?

(2)一组数据的方差一定是正数吗?

(3)已知在n个数据中,x1出现f1次,x2出现f2次,…,xk出现fk次,(f1+…+fk =n),是这n个数的平均数,则f1 (x1-)+ f2 (x2-)+…+fk (xk-)=0总是成立吗?

(4)为什么全部频率的累加等于1?

【解】:

答     案

一、 选择题:

1、  D 2、D 3、B 4、C 5、A 6、C 7、B 8、B 9、C 10、D

二、 填空题:

11、5

12、象形统计图、条形统计图、扇形统计图、折线统计图、茎叶图、频率分布图、频率分布直方图、频率折线图

13、简单随机抽样、分层抽样、系统抽样

14、1995,2000

三、解答题:

15、181,185,177,13.66

16、=33,=33

,乙的成绩比甲稳定,应选乙参加比赛更合适

17、(1)a=0.45,m=6 (2)略

18、略     19、(1)略 (2)y=0.5x+0.4 (3)略    20、略

2004学年第二学期

高中数学必修3第二章(算法)检测题

班级       姓名       学号       

一、选择题:(本题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)

   1.程序框图中表示判断的是(  ).

  A.      B.       C.       D.     

2.阅读流程图,则输出的结果是(  ).

   A.4      B.5      C.6        D.13


 

           

3.用冒泡排序法从小到大排列数据{13,5,9,10,7,4),需要经过(  )趟排序才能完成.

A.4      B.5        C.6        D.7

4.在repeat语句的一般形式中有“until A”,其中A是(  ).

A.循环变量    B.循环体     C.终止条件    D.终止条件为真

5.上图中所示的是一个算法的流程图,已知a1=3,输出的b=7,则a2的值是(  ).

A.11      B.17       C.0.5      D.12

6.已知7163=209×34+57,209=57×3+38,57=38×l+19,38=19×2。根据上述系列等式,确定7163和209的最小公约数是(  ).

A.57      B.3       C.19        D.34

7.条件语句的一般形式是“if A then B else C”,其中B表示的是(  ).

A.满足条件时执行的内容       B.条件语句

C.条件               D.不满足条件时执行的内容

8.将两个数a=8,b=17交换,使a=17,b=8,使用赋值语句正确的一组是(  ).

A.a:=b;b:=a          B.c:=b;;b:b:=a;a:=c

C.b:=a;a:=b          D.a:=c;c:=b; b:=a

9.已知R[i]=i,i=1,2,…,10,11。试用计算机语言,将R[8],R[9],R[10]向后移一个位置,使R[8]空出来,使用语言正确的一组是(  ).

A.R[11]:=R[l0];R[l0]:=R[9];R[9]:=R[8]

B.R[8]:=R[9];R[9]:=R[l0];R[l0]:=R[11]

C.R[11]:=R[10];R[9]:=R[8];R[10]:=R[9]

D.R[11]:=R[l0];R[9]:=R[10];R[9]:=R[8]

10.一个无序列的数据列:{a1,a2,a3,a4,a 5,a6,a 7,a8},按有序列插入法,试计算理论上要经过(  )次有序列插入才能排成一个有序列.

A.最多7       B.最少8      C.最多8     D.最少7

11.阅渎流程图(见第一页图),则循环体是(  )部分.

12.7x+3y=46的正整数解有(  )组.

A.0      B.1       C.2      D.3

二、填空题:(本题共4小题,每小题3分,共12分,请把答案填写在答题纸上)

13. 156,126,60三个数的最大公约数是   

14.运用赋值语句,写出当x= -10时,求多项式x3+5x2+360的值的算法如下:   

              

15.已知一个班的人数在30到56人之间,现在按3列排,多出一人,按5列排,多出3人,按7列排,多出1人,则这个班有  人.

16.读程序: Begin

  Input“x:=”;x

  If  x≥2, then y:=

    Else y:=x+1;

    Print y;

  End.

现在输入x的初值为π,则程序运行的结果为    

三、解答题:(本题共6小题,共52分,解答应写出文字说明,证明过程或演算步骤.)

17.(6分) 已知两点的坐标分别为A(x1,y1),B(x2,y2),设计算法求两点间的距离。

【解】:

18.(6分) 画出算法流程图,求出方程ax = b的解

【解】:

19.(10分) 已知设计算法和流程图,求f(x)的值.

【解】:

20.(10分) 任意给定3个正数,设计一个算法判断分别以3个数为三边的三角形是否存在,画出算法流程图.

【解】:

21.(10分)下面是一个无序列数据列:{172,35,19,288,231,343,56,16,85,513),用冒泡排

序法将其由大到小排列成一个有序列,试画出它的算法流程图,其中赋初值R[1]:=172,R[2]:=35,…,R[10]:=513.

【解】:

20.(10分) 写出用二分法求方程在[1,2]内的一个近似解(精确度为0.1)的一个算法,并用循环语句描述这个算法.

【解】:

答     案

三、 选择题:

2、  C 2、D 3、B 4、D 5、A 6、C 7、A 8、B 9、A 10、C 11.B  12.C

四、 填空题:

13、6  14、x:= -10;y:=  15、43  16、4

三、解答题:

17、(1)输入x1,y1,x2,y2;(2)d:=

(3)输出d;(4)结束

18、算法步骤:(1)判断a是否为0,如果a为0,则判断b是否为0,是输出“x有无穷多解”,否则输出“无解”

  (2)如果a不为0,则计算并输出“x=

19、算法步骤:(1)判断x≥0是否成立

(2)是,计算3x,并输出;

(3)否,计算-x+3,并输出

(4)结束

20、算法步骤:

21、略

22、算法步骤:

2004学年第二学期

高中数学必修3第三章(概率)检测题

班级       姓名       学号       

一、选择题:(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)

1.下列说法正确的是(  ).

A.如果一事件发生的概率为十万分之一,说明此事件不可能发生

B.如果一事件不是不可能事件,说明此事件是必然事件

C.概率的大小与不确定事件有关

D.如果一事件发生的概率为99.999%,说明此事件必然发生

2.从一个不透明的口袋中摸出红球的概率为1/5,已知袋中红球有3个,则袋中共有除颜色外完全相同的球的个数为(  ).

A.5个      B.8个       C.10个      D.15个

3.下列事件为确定事件的有(  ).

 (1)在一标准大气压下,20℃的纯水结冰

 (2)平时的百分制考试中,小白的考试成绩为105分

 (3)抛一枚硬币,落下后正面朝上

 (4)边长为a,b的长方形面积为ab

 A.1个     B.2个      C.3个        D.4个

4.从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是(  ).

A.至少有1个白球,都是白球       B.至少有1个白球,至少有1个红球

C.恰有1个白球,恰有2个白球      D.至少有1个白球,都是红球

5.从数字1,2,3,4,5中任取三个数字,组成没有重复数字的三位数,则这个三位数大于400的概率是( ).

A.2/5     B、2/3       C.2/7       D.3/4

6.从一副扑克牌(54张)中抽取一张牌,抽到牌“K”的概率是(  ).

A.1/54    B.1/27      C.1/18      D.2/27

7.同时掷两枚骰子,所得点数之和为5的概率为(  ).

 A.1/4      B.1/9      C.1/6      D.1/12

8.在所有的两位数(10~99)中,任取一个数,则这个数能被2或3整除的概率是(  ).

 A.5/6      B.4/5     C.2/3      D.1/2

9.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为(  ).

 A.60%      B.30%     C.10%     D.50%

10.根据多年气象统计资料,某地6月1日下雨的概率为0.45,阴天的概率为0.20,则该日晴天的概率为(  ).

 A.0.65      B.0.55     C.0.35     D.0.75

二、填空题:(本题共4小题,共18分,请把答案填写在答题纸上)

11.(3分)对于①“一定发生的”,②“很可能发生的”,③“可能发生的”,④“不可能发生的”,⑤“不太可能发生的”这5种生活现象,发生的概率由小到大排列为(填序号)        

12.(6分)在10000张有奖明信片中,设有一等奖5个,二等奖10个,三等奖l00个,从中随意买l张.

(1)P(获一等奖)=   ,P(获二等奖)=    ,P(获三等奖)=    

   (2)P(中奖)=    ,P(不中奖)=    

  13.(3分)同时抛掷两枚骰子,则至少有一个5点或6点的概率是    

  14.(6分)下表为初三某班被录取高一级学校的统计表:

        

 重点中学

 普通中学

 其他学校

  合计

  男生/人

  18

  7

  1

  女生/人

  16

  10

  2

  合计/人

(1)完成表格.

  (2)P(录取重点中学的学生)=     ;  P(录取普通中学的学生)=     

  P(录取的女生)=    

                       

三、解答题:(本题共6小题,共52分,解答应写出文字说明,证明过程或演算步骤.)

15.(8分) 由经验得知,在某商场付款处排队等候付款的人数及概率如下表:

 排队人数

0

1

2

3

4

5人以上

  概率

0.1

0.16

0.3

0.3

0.1

0.04

  

   (1)至多有2人排队的概率是多少?  (2)至少有2人排队的概率是多少?

【解】:

16.(10分) 2.袋中有除颜色外完全相同的红、黄、白三种颜色的球各一个,从中每次任取1个.有放回地抽取3次,求:

 (1)3个全是红球的概率. (2)3个颜色全相同的概率.

 (3)3个颜色不全相同的概率. (4)3个颜色全不相同的概率.

【解】:

17.(8分) 某地区的年降水量在下列范围内的概率如下表所示:

年降水量/mm

[100,150)

[150,200)

[200,250)

[250,300)

 概率

0.12

0.25

0.16

0.14

 (1)求年降水量在[100,200)(mm)范围内的概率;

(2)求年降水量在[150,300)(mm)范围内的概率.

【解】:

18.(8分) 抛掷一均匀的正方体玩具(各面分别标有数1,2,3,4,5,6),若事件A为“朝上一面的数是奇数”,事件B“朝上一面的数不超过3”,求P(A+B).

下面的解法是否正确?为什么?若不正确给出正确的解法.

 解  因为P(A+B)=P(A)+P(B),而P(A)=3/6=1/2,P(B)=3/6=1/2,

  所以P(A+B)=1/2+1/2=1.

【解】:

19.(15分) 一年按365天计算,两名学生的生日相同的概率是多少?

【解】:

20.(10分) 抽签口试,共有10张不同的考签.每个考生抽1张考签,抽过的考签不再放回.考生王某会答其中3张,他是第5个抽签者,求王某抽到会答考签的概率.

【解】:

答     案

五、 选择题:

3、  C 2、D 3、C 4、C 5、A 6、D 7、B 8、C 9、D 10、C

六、 填空题:

11、④⑤③②①

12、(1)   (2)

13、

14、(1)略  (2)

三、解答题:

15、(1)0.56 (2)0.74

16、(1);(2);(3);(4)

17、(1)0.37 (2)0.55

18、

19、

20、(等可能事件,与抽签顺序无关)