第三章 数列(一)
●知识网络
●范题精讲
一、等差数列的概念、通项公式
【例1】 等差数列{an}的前n项和记为Sn.已知a10=30,a20=50.
(1)求通项an;
(2)若Sn=242,求n.
分析:在等差数列中,有a1、an、n、d、Sn五个基本量,若已知其中的任何三个,总可以求出另外两个的值.
解:(1)由an=a1+(n-1)d,a10=30,a20=50,
得方程组
解得a1=12,d=2.
所以an=2n+10.
(2)由Sn=na1+d,Sn=242,得方程12n+×2=242.
解得n=11或n=-22(舍去).
评注:本题是一个最基础的数列题,内容上只涉及等差数列的通项和前n项和.它主要考查等差数列的通项公式、求和公式以及构造方程的数学方法,考查运算能力.知识点较为单一,但高考中仍不乏这类考查目的明确、适应所有考生的中低档题.
二、等差数列性质的应用
【例2】 已知等差数列{an}为等差数列,p≠q,ap=q,aq=p,求ap+q.
分析:可先转化为a1和d去探索,也可利用等差数列性质求解,还可利用一次函数图象来解.
|
相减得(p-q)d=q-p,∵p≠q,∴d=-1.代入①,
得a1=p+q-1.故ap+q=a1+(p+q-1)d=0.
解法二:ap=aq+(p-q)d,∴q=p+(p-q)d,以下同解法一.
解法三:不妨设p<q,由于an为关于n的一次函数图象上均匀排列的一群孤立点.故(p,ap)、(q,aq)、(p+q,ap+q)三点在同一直线上,如图.
由△ABE∽△BCF得(设ap+q=m)
∴1=.设m=0,得ap+q=0.
三、等差数列前n项和公式的应用
【例3】 设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,S13<0.
(1)求公差d的取值范围;
(2)指出S1,S2,…,S12中哪一个值最大,并说明理由.
(1)解:依题意有
由a3=12,得a1=12-2d.
又-<d<-3.
(2)解法一:由d<0,可知a1>a2>a3>…>a12>a13.
因此,若在1≤n≤12中,存在自然数n,使得an>0,an+1<0,则Sn就是S1,S2,…,S12中的最大值.
由于S12=6(a6+a7)>0,S13=13a7<0,即a6+a7>0,a7<0,由此得a6>-a7>0.
故在S1,S2,…,S12中S6的值最大.
解法二:Sn=na1+d
=n(12-2d)+n(n-1)d=n2-(-12)n
=[n-(5-)]2-[(5-)]2.
∵d<0,∴[n-(5-)]2最小时,Sn最大.
当-<d<-3时,6<(5-)<6.5.
∴n=6时,[n-(5-)]2最小.
∴S6最大.
解法三:由d<0,可知a1>a2>a3>…>a12>a13.
因此,若在1≤n≤12中,存在自然数n,使得an>0,an+1<0,则Sn就是S1,S2,…,S12中的最大值.
由已知
故在S1,S2,…,S12中S6的值最大.
评注:第(2)题用了三种方法来解,解法一与解法三类似,只是确定a6>0,a7<0的方法不同,解法一技巧性强,解法二是把问题转化成了有限制条件的一元二次函数最值问题.
四、数列的应用
【例4】 某鱼塘养鱼,由于改进了饲养技术,预计第一年产量的增长率为200%,以后每年的增长率是前一年增长率的一半,设此鱼塘里原来的鱼储存量为a.
(1)写出改进饲养技术后的第一年、第二年、第三年、第四年的产量,并写出第n年与第(n-1)年(n∈N且n≥2)的产量之间的关系式(不要求证明).
(2)由于环境污染及池塘老化等因素,致使每年将损失年产量的10%,这样以后每年的产量是否始终逐年提高?若是,请予以证明;若不是,请说明从第几年起产量将不如上一年.(lg2=0.3010,lg3=0.4771)
解:(1)不妨设改进技术后第n年的产量为an,则
a1=a(1+200%)=3a,a2=a1(1+×200%)=6a,
a3=a2(1+×200%)=9a,a4=a3(1+×200%)=a.
依此,得an=an-1(1+×200%)=an-1[1+()n-2](n∈N*,n≥2).
(2)设遭损失后第n年的产量为bn,则
b1=a1(1-10%),b2=b1(1+×200%)(1-10%),…,
bn=bn-1[1+()n-2](1-10%).
令bn<bn-1,则0.9[1+()n-2]<12n-2>9,
∴n-2>,即n>5.17.由n∈N*知n≥6.
故从第6年起,产量将不如上一年.
评注:这是一道数列型应用题,审题时应抓住从第二年开始,"以后每年的增长率是前一年增长率的一半"这个关键,把它抽象为数列的通项,容易求出递推关系式an=an-1[1+ ()n-2](n∈N*且n≥2),即建成了递推模型.第(2)问归结为一个指数不等式问题,利用取对数法很容易求得这个数学问题的解.
●试题详解
高中同步测控优化训练(十一)
第三章 数列(一)(A卷)
说明:本试卷分为第Ⅰ、Ⅱ卷两部分,共100分,考试时间90分钟.
第Ⅰ卷(选择题 共30分)
一、选择题(本大题共10小题,每小题3分,共30分)
1.在100至500之间的正整数能被11整除的个数为
A.34 B.35 C.36 D.37
解析:观察出100至500之间能被11整除的数为110,121,132,…,它们构成一个等差数列,公差为11,an=110+(n-1)·11=11n+99,由an≤500,解得n≤36.4,n∈N*,∴n≤36.
答案:C
2.在数列{an}中,a1=1,an+1=an2-1(n≥1),则a1+a2+a3+a4+a5等于
A.-1 B.1 C.0 D.2
解析:由已知:an+1=an2-1=(an+1)(an-1),
∴a2=0,a3=-1,a4=0,a5=-1.
答案:A
3.若数列{an}的前n项和Sn=n2-2n+3,则此数列的前3项依次为
A.-1,1,3 B.2,1,3
C.6,1,3 D.2,3,6
解析:当n=1时,a1=S1=12-2×1+3=2;
当n=2时,由S2=a1+a2=22-2×2+3,得a2=1;
当n=3时,由S3=a1+a2+a3=32-2×3+3,得a3=3.
答案:B
4.设函数f(x)满足f(n+1)=(n∈N*)且f(1)=2,则f(20)为
A.95 B.97 C.105 D.192
解析:f(n+1)-f(n)=
各式相加得f(20)-f(1)=(1+2+…+19) f(20)=95+f(1)=97.
答案:B
5.已知等差数列{an}中公差d≠0.若n≥2,n∈N*,则
A.a1an+1<a2an B.a1+an+1>a2+an
C.a1+an+1<a2+an D.a1an+1>a2an
解析:a1an+1-a2an=a1(a1+nd)-(a1+d)[a1+(n-1)d]=-(n-1)d2<0,∴a1an+1<a2an.
答案:A
6.等差数列{an}中,a4+a7+a10=57,a4+a5+…+a14=275,ak=61,则k等于
A.18 B.19 C.20 D.21
解析:∵3a7=a4+a7+a10=57,∴a7=19.由a4+a5+…+a14=275,可得a9=25.∴公差d=3. ∵ak=a9+(k-9)·d,∴61=25+(k-9)×3,解得k=21.
答案:D
7.已知等差数列{an}的公差为正数,且a3·a7=-12,a4+a6=-4,则S20为
A.180 B.-180
C.90 D.-90
解析:由等差数列性质,a4+a6=a3+a7=-4与a3·a7=-12联立,即a3、a7是方程x2+4x-12=0的两根.又公差d>0,∴a7>a3a7=2,a3=-6,从而得a1=-10,d=2,S20=180.
答案:A
8.设Sn是等差数列前n项的和,若,则等于
A.1 B.-1
C.2 D.
解法一:∵,∴=.
∴.
解法二:∵,
∴
答案:A
9.已知{an}是递增数列,且对任意n∈N*都有an=n2+λn恒成立,则实数λ的取值范围是
A.(-,+∞) B.(0,+∞)
C.(-2,+∞) D.(-3,+∞)
解析:由{an}为递增数列得an+1-an=2n+1+λ>0恒成立,即λ>-2n-1在n≥1时恒成立,只需λ>(-2n-1)max=-3,故选D.
答案:D
10.在等差数列{an}中,若S9=18,Sn=240,an-4=30,则n的值为
A.14 B.15
C.16 D.17
解析:S9==18a1+a9=42(a1+4d)=4.
∴a1+4d=2.又an=an-4+4d,∴Sn==16n=240.
∴n=15.
答案:B
第Ⅱ卷(非选择题 共70分)
二、填空题(本大题共4小题,每小题4分,共16分)
11.设数列{an}的前n项和为Sn,Sn=(n∈N*),且a4=54,则a1的值是________.
解析:∵a4=S4-S3,
∴=54.∴a1=2.
答案:2
12.若数列{an}的前n项和Sn=lg[(1+n)],则a10+a11+a12+…+a99=_________.
解析:a10+a11+…+a99=S99-S9=lg(·100)-lg(·10)=1-0=1.
答案:1
13.在-9和3之间插入n个数,使这n+2个数组成和为-21的等差数列,则n=_______.
解析:-21=,∴n=5.
答案:5
14.等差数列{an}中,a1+a2+a3=-24,a18+a19+a20=78,则此数列前20项的和等于________.
解析:由a1+a2+a3=-24,可得3a2=-24;
由a18+a19+a20=78,可得3a19=78,即a2=-8,a19=26.
∴S20==10(a2+a19)=10(-8+26)=180.
答案:180
三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤)
15.(本小题满分8分)已知数列{an}满足下列条件,写出它的前5项,并归纳出数列的一个通项公式.
(1)a1=0,an+1=an+(2n-1);
(2)a1=1,an+1=.
解:(1)∵a1=0,an+1=an+(2n-1),
∴a2=a1+(2×1-1)=0+1=1,a3=a2+(2×2-1)=4,a4=a3+(2×3-1)=9,a5=a4+(2×4-1)=16.
∴它的前5项依次是0,1,4,9,16.又可写成(1-1)2,(2-1)2,(3-1)2,(4-1)2,(5-1)2.
故该数列的一个通项公式是an=(n-1)2.
(2)∵a1=1,an+1=,
∴a2=,
a4=
∴它的前5项依次是1,.
又可写成
故它的一个通项公式为an=.
16.(本小题满分10分)已知等差数列{an}中,a1+a4+a7=15,a2a4a6=45,求其通项an.
解:∵a1+a7=2a4,且a1+a4+a7=15,∴a4=5.
又∵a2a4a6=45,∴a2a6=9.
设其公差为d,又a4=5,∴a2=a4-2d,a6=a4+2d.代入a2a6=9可得
(5-2d)(5+2d)=925-4d2=9d=±2.
当d=2时,an=a4+(n-4)d=5+(n-4)×2=2n-3(n∈N*);
当d=-2时,an=a4+(n-4)d=5+(n-4)×(-2)=13-2n(n∈N*).
17.(本小题满分12分)数列的通项公式为an=n2-5n+4,问:
(1)数列中有多少项是负数?
(2)n为何值时,an有最小值?并求出最小值.
解:(1)由an为负数,得n2-5n+4<0,解得1<n<4.
∵n∈N*,故n=2或3,即数列有2项为负数,分别是第2项和第3项.
(2)∵an=n2-5n+4=(n-)2-,
∴对称轴为n==2.5.
又∵n∈N*,故当n=2或n=3时,an有最小值,最小值为22-5×2+4=-2.
18.(本小题满分12分)有30根水泥电线杆,要运往1000米远的地方开始安装,在1000米处放一根,以后每隔50米放一根,一直向前放.一辆汽车一次最多运三根,如果用一辆车完成这项任务,从开始运第一车算起,运完货后回到起点,这辆汽车的行程是多少千米?
解:设在运完第3(n-1)至3n(其中1≤n≤10且n∈N*)根且返回起点时,这辆汽车的行程为an米,则根据题意得a1=(1000+50+50)×2=2×1100,a2=(1100+50+50+50)×2=2(1100+150),a3=(1100+150+50+50+50)×2=2(1100+300),….
∴{an}是以2×1100为首项,150为公差的等差数列.从而行程为s10=(1100×10+×10×9×150)×2=35500.
答:这辆汽车的行程是35500千米.
19.(本小题满分12分)设无穷等差数列{an}的前n项和为Sn.
(1)若首项a1=,公差d=1,求满足Sk2=(Sk)2的正整数k;
(2)求所有的无穷等差数列{an},使得对一切正整数k都有Sk2=(Sk)2成立.
解:(1)当a1=,d=1时,
Sn=na1+
由Sk2=(Sk)2,得k4+k2=(k2+k)2,
即k3(k-1)=0.又∵k≠0,∴k=4.
(2)设等差数列{an}的公差为d,则在Sk2=(Sk)2中,分别取k=1,2,得
|
由①得a1=0或a1=1.
当a1=0时,代入②得d=0或d=6.
若a1=0,d=0,则an=0,Sn=0,从而Sk2=(Sk)2成立;
若a1=0,d=6,则an=6(n-1),Sn=3n2-3n.此时Sk2=3k4-3k2,(Sk)2=(3k2-3k)2,显然Sk2≠(Sk)2.
当a1=1时,代入②式得d=0或d=2.
若a1=1,d=0时,an=1,Sn=n,从而Sk2=(Sk)2成立;
若a1=1,d=2时,an=2n-1,Sn=1+3+…+(2n-1)=n2,从而Sk2=(Sk)2成立.
综上,共有3个满足条件的无穷等差数列,它们是an=0,an=1,an=2n-1.