高三数学专题07-立体几何题怎么解

2014-5-11 0:20:36 下载本试卷

立体几何题怎么解

                安振平    

高考立体几何试题一般共有4道(客观题3道, 主观题1道), 共计总分27分左右,考查的知识点在20个以内. 选择填空题考核立几中的计算型问题, 而解答题着重考查立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着”多一点思考,少一点计算”的发展.从历年的考题变化看, 以多面体和旋转体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题.

    例1  四棱锥P—ABCD的底面是边长为a的正方形,PB⊥面ABCD.

    (1)若面PAD与面ABCD所成的二面角为60°,求这个四棱锥的体积;

    (2)证明无论四棱锥的高怎样变化,面PAD与面PCD所成的二面角恒大于90°

 
讲解:(1)正方形ABCD是四棱锥P—ABCD的底面, 其面积

从而只要算出四棱锥的高就行了.

面ABCD,

    ∴BA是PA在面ABCD上的射影.又DA⊥AB,

  ∴PA⊥DA,

  ∴∠PAB是面PAD与面ABCD所成的二面角的平面角,

   ∠PAB=60°.        

   而PB是四棱锥P—ABCD的高,PB=AB·tg60°=a,

   .                                 

(2)不论棱锥的高怎样变化,棱锥侧面PAD与PCD恒为全等三角形.

   作AE⊥DP,垂足为E,连结EC,则△ADE≌△CDE,

     是面PAD与面PCD所成的二面角的平面角.

      设AC与DB相交于点O,连结EO,则EO⊥AC,

                                

   在

   故平面PAD与平面PCD所成的二面角恒大于90°.                

   本小题主要考查线面关系和二面角的概念,以及空间想象能力和逻辑推理能力, 具有一定的探索性, 是一道设计新颖, 特征鲜明的好题.

 
例2  如图,直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形,∠ACB=900,AC=1,C点到AB1的距离为CE=,D为AB的中点.

(1)求证:AB­1⊥平面CED;

(2)求异面直线AB1与CD之间的距离;

(3)求二面角B1—AC—B的平面角.

讲解:(1)∵D是AB中点,△ABC为等腰直角三角形,∠ABC=900,∴CD⊥AB又AA1⊥平面ABC,∴CD⊥AA1.

∴CD⊥平面A1B1BA ∴CD⊥AB1,又CE⊥AB1, ∴AB1⊥平面CDE;

(2)由CD⊥平面A1B1BA ∴CD⊥DE

∵AB1⊥平面CDE ∴DE⊥AB1

∴DE是异面直线AB1与CD的公垂线段

∵CE=,AC=1 , ∴CD=

(3)连结B1C,易证B1C⊥AC,又BC⊥AC ,

∴∠B1CB是二面角B1—AC—B的平面角.

在Rt△CEA中,CE=,BC=AC=1,

∴∠B1AC=600

, ∴,

 , ∴.

作出公垂线段和二面角的平面角是正确解题的前提, 当然, 准确地作出应当有严格的逻辑推理作为基石.

例3  如图al是120°的二面角,A,B两点在棱上,AB=2,D内,三角形ABD是等腰直角三角形,∠DAB=90°,C内,ABC是等腰直角三角形∠ACB=

(I)求三棱锥D—ABC的体积;

(2)求二面角D—AC—B的大小;   

(3)求异面直线AB、CD所成的角.

   

 

  讲解:  (1) 过D向平面做垂线,垂足为O,连强OA并延长至E.

为二面角a—l的平面角..

是等腰直角三角形,斜边AB=2.D到平面的距离DO=

(2)过O内作OM⊥AC,交AC的反向延长线于M,连结DM.则AC⊥DM.∴∠DMO 为二面角D—AC—B的平面角. 又在DOA中,OA=2cos60°=1.且

  (3)在平在内,过CAB的平行线交AEFDCF为异面直线ABCD所成的角. 为等腰直角三角形,又AF等于CAB的距离,即△ABC斜边上的高,

异面直线AB,CD所成的角为arctg

  比较例2与例3解法的异同, 你会得出怎样的启示? 想想看.

  例4

 
在边长为a的正三角形的三个角处各剪去一个四边形.这个四边形是由两个全等的直角三角形组成的,并且这三个四边形也全等,如图①.若用剩下的部分折成一个无盖的正三棱柱形容器,如图②.则当容器的高为多少时,可使这个容器的容积最大,并求出容积的最大值.

             图①             图②

  讲解:  设容器的高为x.则容器底面正三角形的边长为,

    

         .

  当且仅当 .

故当容器的高为时,容器的容积最大,其最大容积为

对学过导数的同学来讲,三次函数的最值问题用导数求解是最方便的,请读者不妨一试. 另外,本题的深化似乎与2002年全国高考文科数学压轴题有关,还请做做对照. 类似的问题是:

    某企业设计一个容积为V的密闭容器,下部是圆柱形,上部是半球形,当圆柱的底面半径r和圆柱的高h为何值时,制造这个密闭容器的用料最省(即容器的表面积最小).

  例5 已知三棱锥P—ABC中,PC⊥底面ABC,AB=BC,

D、F分别为AC、PC的中点,DE⊥AP于E.

  (1)求证:AP⊥平面BDE;        

(2)求证:平面BDE⊥平面BDF;

(3)若AE∶EP=1∶2,求截面BEF分三棱锥

P—ABC所成两部分的体积比.

讲解:  (1)∵PC⊥底面ABC,BD平面ABC,∴PC⊥BD.

由AB=BC,D为AC的中点,得BD⊥AC.又PC∩AC=C,∴BD⊥平面PAC. 又PA平面、PAC,∴BD⊥PA.由已知DE⊥PA,DE∩BD=D,∴AP⊥平面BDE.

  (2)由BD⊥平面PAC,DE平面PAC,得BD⊥DE.由D、F分别为AC、PC的中点,得DF//AP.

由已知,DE⊥AP,∴DE⊥DF. BD∩DF=D,∴DE⊥平面BDF.

DE平面BDE,∴平面BDE⊥平面BDF.

  (3)设点E和点A到平面PBC的距离分别为h1和h2.则

      h1∶h2=EP∶AP=2∶3,

  

  故截面BEF分三棱锥P—ABC所成两部分体积的比为1∶2或2∶1

值得注意的是, “截面BEF分三棱锥P—ABC所成两部分的体积比”并没有说明先后顺序, 因而最终的比值答案一般应为两个, 希不要犯这种”会而不全”的错误.

例6  已知圆锥的侧面展开图是一个半圆,它被过底面中心O1且平行于母线AB的平面所截,若截面与圆锥侧面的交线是焦参数(焦点到准线的距离)

为p的抛物线.

 


(1)求圆锥的母线与底面所成的角;

(2)求圆锥的全面积.

  讲解: (1)设圆锥的底面半径为R,母线长为l

由题意得:,

,

所以母线和底面所成的角为

(2)设截面与圆锥侧面的交线为MON,其中O为截面与

AC的交点,则OO1//AB且

在截面MON内,以OO1所在有向直线为y轴,O为原点,建立坐标系,则O为抛物的顶点,所以抛物线方程为x2=-2py,点N的坐标为(R,-R),代入方程得

R2=-2p(-R),得R=2p,l=2R=4p.

∴圆锥的全面积为.

将立体几何与解析几何相链接, 颇具新意, 预示了高考命题的新动向. 类似请思考如下问题:

   一圆柱被一平面所截,截口是一个椭圆.已知椭圆的

长轴长为5,短轴长为4,被截后几何体的最短侧面母   

线长为1,则该几何体的体积等于     

  例7 如图,几何体ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a, DC=a,F、G分别为EB和AB的中点.

 
(1)求证:FD∥平面ABC;

(2)求证:AF⊥BD;

 (3) 求二面角B—FC—G的正切值.

讲解: ∵F、G分别为EB、AB的中点,

∴FG=EA,又EA、DC都垂直于面ABC, FG=DC,

  ∴四边形FGCD为平行四边形,∴FD∥GC,又GC面ABC,

  ∴FD∥面ABC.

(2)∵AB=EA,且F为EB中点,∴AF⊥EB ① 又FG∥EA,EA⊥面ABC

∴FG⊥面ABC ∵G为等边△ABC,AB边的中点,∴AG⊥GC.

∴AF⊥GC又FD∥GC,∴AF⊥FD ②

由①、②知AF⊥面EBD,又BD面EBD,∴AF⊥BD.

    (3)由(1)、(2)知FG⊥GB,GC⊥GB,∴GB⊥面GCF.

过G作GH⊥FC,垂足为H,连HB,∴HB⊥FC.

∴∠GHB为二面角B-FC-G的平面角.

易求.

    例8  如图,正方体ABCDA1B1C1D1的棱长为1,PQ分别是线段AD1BD上的点,且

D1PPA=DQQB=5∶12.

 

(1) 求证PQ∥平面CDD1C1

 (2) 求证PQAD

 (3) 求线段PQ的长.

讲解:  (1)在平面AD1内,作PP1∥AD与DD1交于点P1,在平面AC内,作

1∥BC交CD于点Q1,连结P1Q1.

  ∵ ,   ∴PP11 .

由四边形P1P1为平行四边形,  知PQ∥P1Q1

而P1Q1平面CDD1C1, 所以PQ∥平面CDD1C1

(2)AD⊥平面D1DCC1,  ∴AD⊥P1Q1,

又∵PQ∥P1Q1,  ∴AD⊥PQ.

(3)由(1)知P1Q1 PQ,

,而棱长CD=1.   ∴DQ1=. 同理可求得 P1D=.

在Rt△P1DQ1中,应用勾股定理, 立得

P1Q1=.

做为本题的深化, 笔者提出这样的问题: P, Q分别是BD,上的动点,试求的最小值, 你能够应用函数方法计算吗? 试试看. 并与如下2002年全国高考试题做以对照, 你会得到什么启示?

如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直。点M在AC上移动,点N在BF上移动,若CM=BN=

(1)    求MN的长;

(2)    当为何值时,MN的长最小;

(3)    当MN长最小时,求面MNA与面MNB所成的二面角的大小。

立体几何知识是复课耗时较多, 而考试得分偏底的题型. 只有放底起点, 依据课本, 熟化知识, 构建空间思维网络, 掌握解三角形的基本工具, 严密规范表述, 定会突破解答立几考题的道道难关.