2003年普通高校招生数学(理)统一考试(上海卷)
(理工农医类)
本试卷共22道题,满分150分。考试时间120分钟。
第Ⅰ卷 (共110分)
一、填空题(本大题满分48分)本大题共有12题,只要求直接填写结果,每个空格填对得
4分,否则一律得零分。
1.函数的最小正周期T= .
2.若 .
3.在等差数列中,a5=3, a6=-2,则a4+a5+…+a10= .
4.在极坐标系中,定点A点B在直线上运动,当线段AB最短
时,点B的极坐标是 .
5.在正四棱锥P—ABCD中,若侧面与底面所成二面角的大小为60°,则异面直线PA与BC所成角的大小等于 .(结果用反三角函数值表示)
6.设集合A={xx<4},B={xx2-4x+3>0}, 则集合{xx∈A且= .
7.在△ABC中,sinA;sinB:sinC=2:3:4,则∠ABC= .(结果用反三角函数值表示)
8.若首项为a1,公比为q的等比数列的前n项和总小于这个数列的各项和,则首项a1,公比q的一组取值可以是(a1,q)= .
9.某国际科研合作项目成员由11个美国人、4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为 .(结果用分数表示)
10.方程x3+lgx=18的根x≈ .(结果精确到0.1)
11.已知点其中n的为正整数.设Sn表示△ABC外接圆的面积,则= .
12.给出问题:F1、F2是双曲线=1的焦点,点P在双曲线上.若点P到焦点F1的距离等于9,求点P到焦点F2的距离.某学生的解答如下:双曲线的实轴长为8,由
PF1-PF2=8,即9-PF2=8,得PF2=1或17.
该学生的解答是否正确?若正确,请将他的解题依据填在下面空格内,若不正确,将正确的结果填在下面空格内.
二、选择题(本大题满分16分)本大题共4题,每题都给出代号为A、B、C、D的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.
13.下列函数中,既为偶函数又在(0,π)上单调递增的是 ( )
A.y=tgx. B.y=cos(-x).
C. D..
14.在下列条件中,可判断平面α与β平行的是 ( )
A.α、β都垂直于平面r.
B.α内存在不共线的三点到β的距离相等.
C.l,m是α内两条直线,且l∥β,m∥β.
D.l,m是两条异面直线,且l∥α,m∥α, l∥β,m∥β.
15.a1、b1、c1、a2、b2、c2均为非零实数,不等式a1x2+b1x+c1>0和a2x2+b2x+c2>0的解集分别为集合M和N,那么“”是“M=N”的 ( )
A.充分非必要条件. B.必要非充分条件.
C.充要条件 D.既非充分又非必要条件.
16.f()是定义在区间[-c,c]上的奇函数,其图象如图所示:令g()=af()+b,则下
列关于函数g()的叙述正确的是 ( )
A.若a<0,则函数g()的图象关于原点对称.
B.若a=-1,-2<b<0,则方程g()=0有大于2的实根.
C.若a≠0,b=2,则方程g()=0有两个实根.
D.若a≥1,b<2,则方程g()=0有三个实根.
三、解答题(本大题满分86分)本大题共有6题,解答下列各题必须写出必要的步骤.
17.(本题满分12分)
已知复数z1=cosθ-i,z2=sinθ+i,求 z1·z2的最大值和最小值.
18.(本题满分12分)
已知平行六面体ABCD—A1B1C1D1中,A1A⊥平面ABCD,AB=4,AD=2.若B1D⊥BC,直线B1D与平面ABCD所成的角等于30°,求平行六面体ABCD—A1B1C1D1的体积.
19.(本题满分14分)本题共有2个小题,第1小题满分5分,第2小题满分9分.
已知数列(n为正整数)是首项是a1,公比为q的等比数列.
(1)求和:
(2)由(1)的结果归纳概括出关于正整数n的一个结论,并加以证明.
20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.
如图,某隧道设计为双向四车道,车道总宽22米,要求通行车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个椭圆形状.
(1)若最大拱高h为6米,则隧道设计的拱
宽l是多少?
(2)若最大拱高h不小于6米,则应如何设
计拱高h和拱宽l,才能使半个椭圆形隧
道的土方工程量最最小?
(半个椭圆的面积公式为,柱体体积为:底面积乘以高.本题结果精确到0.1米)
21.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分5分,第3小题满分7分.
在以O为原点的直角坐标系中,点A(4,-3)为△OAB的直角顶点.已知AB=2OA,且点B的纵坐标大于零.
(1)求向量的坐标;
(2)求圆关于直线OB对称的圆的方程;
(3)是否存在实数a,使抛物线上总有关于直线OB对称的两个点?若不存在,说明理由:若存在,求a的取值范围.
22.(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分6分,第3小题满分7分.
已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,对任意x∈R,有f(x+T)=T f(x)成立.
(1)函数f(x)= x 是否属于集合M?说明理由;
(2)设函数f(x)=ax(a>0,且a≠1)的图象与y=x的图象有公共点,证明:
f(x)=ax∈M;
(3)若函数f(x)=sinkx∈M ,求实数k的取值范围.