2006学年度高中三年级第一次质量检测数学含答案(理科)

2014-5-11 0:20:41 下载本试卷

资阳市2005—2006学年度高中三年级第一次质量检测

理 科 数 学

本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第Ⅰ卷1至2页,第Ⅱ卷3至8页. 全卷共150分,考试时间为120分钟.

第Ⅰ卷(选择题 共60分)

注意事项:

1.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目用铅笔涂写在答题卡上.

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.

3.考试结束时,将本试卷和答题卡一并收回.

一、选择题:本大题共12个小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目的要求的.

1.设集合等于(  ).

A {1,2,3,4,5}   B{1, 3}           C{1,2,3}         D{4,5}

2.复数等于(  ).

A.         B.       C.        D.

3.不等式的解集为(  ).

A.(-∞,-3)∪(2,∞)                  B.(-3,2)

C.(-2,0)                        D.(0,2)

4.已知数列的前n项和为,则的值是(  ).

A.0           B.1           C.2           D.3


5.若函数满足条件:当x<4时,f(x+1)=f(x);当x≥4时,f(x)=()x.则根据条件可以求得的值是(  ).

A.            B.             C.             D.

6.如果的(  ).

A 充要条件                          B. 必要不充分条件

C. 充分不必要条件                    D. 既不充分也不必要的条件

7.已知则tanα的值为(  ).

    A.           B.–2           C.2            D.

8.从4台甲型和5台乙型电视机中任意取出三台,其中至少要有甲型和乙型电视机各一台,则不同的取法共有(  )种.

A.140           B.84             C.70             D.35

9.已知Sn是等差数列{an}的前n项和,且a2a4a7a15=40,则S13的值为(  ).

A.20               B.65              C.130             D.260

10.若函数内单调递减,则f(x)可以是(  ).

A.1           B.cosx          C.sinx         D.-sinx

11.定义在实数集R上的函数的最小正周期为T,若当时,函数y有反函数y,则当时,函数y的反函数是(  ).

A.y=                    B.y=

C.y=                 D.y=

12.若O是平面上的定点,ABC是平面上不共线的三点,且满足(),则P点的轨迹一定过△ABC的(  ).

A.重心         B.内心          C.外心          D.垂心


资阳市2005—2006学年度高中三年级第一次质量检测

理 科 数 学

第Ⅱ卷(非选择题 共90分)

题号

总分

总分人

17

18

19

20

21

22

得分

                   

注意事项:

1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷上.

2.答卷前将密封线内的项目填写清楚.

  二、填空题:本大题共4个小题,每小题4分,共16分. 把答案直接填在题目中的横线上.

13.已知的展开式的第二项和第三项的系数比为2:11,则展开式中的有理项共有       项.

14.若关于x的不等式,则实数a的值是     .

15.若函数的定义域为R,则实数a的取值范围是    .

16.设任意的平面向量,给出下列的命题:① ;②;③ ;④ ;⑤ .其中是真命题的有           (写出所有正确命题的序号).


三、解答题:本大题共6个小题,共74分.解答要写出文字说明,证明过程或演算步骤.

17.(本小题满分12分)

已知函数f(x)=x2axa(aR).

(Ⅰ) 解不等式:f ( x )>-x

(Ⅱ) 若x=1处的切线方程是y=2x+3,求ab的值.

18.(本小题满分12分)

甲、乙、丙各进行一次射击,如果甲、乙2人各自击中目标的概率为0.8,3人都击中目标的概率是0.384,计算:

(Ⅰ)丙击中目标的概率;

(Ⅱ)至少有2人击中目标的概率;

(Ⅲ)其中恰有一人击中目标的概率.


19.(本小题满分12分)

在∆ABC中,已知三个内角ABC的对边是abc,其中c=10,且

(Ⅰ) 判断∆ABC形状;

(Ⅱ) 若∆ABC的外接圆圆心为O,点P位于劣弧上,∠PAB=60°,求四边形ABCP的面积.


20.(本小题满分12分)

已知k,向量之间满足关系 .

(Ⅰ) 用k表示

(Ⅱ) 求的范围;

(Ⅲ) 若f ( k )=  +在区间(0,2上是减函数,求正实数a的取值范围.


21.(本小题满分13分)

f(x)是定义在实数集R上的奇函数,且f(x)=

(Ⅰ) 求证:直线x=1是函数yf(x)的对称轴;

(Ⅱ) 当时,求的解析式;

(Ⅲ) 若A,求a的取值范围.


 22.(本小题满分13分)

已知函数上是增函数.

(Ⅰ) 求实数a的取值范围;

(Ⅱ) 若数列

(Ⅲ) 若数列满足,试判断数列是否单调,并证明你的结论.

资阳市2005-2006学年度高中三年级第一次质量检测

理科数学试题参考答案及评分意见

一.选择题:每小题5分,共12个小题,满分60分.

1-5. BBACD;6-10. ABCCD;11-12. DA.

二.填空题:每小题4分,共4个小题,满分16分.

13.3;14.;15.;16.②⑤ .

三.解答题:

17.

(Ⅰ)由题意x2+(a+1)xa>0,即(xa)(x+1)>0. 故························································· 2分

a<1时,由-a>-1,知 x<-1或x>-a

a=1时,由-a=-1,知x≠-1 ;

a>1时,由-a<-1,知x<-ax>-1. 5分

综上,当a<1时,原不等式的解集为{xx>-ax<-1};

a=1时,原不等式的解集为{x xRx≠-1} ;

a>1时,原不等式的解集为{x x<-ax>-1}.················································· 6分

(Ⅱ)∵函数h(x)=x3bf (x)在x=1处的切线方程是y=2x+3,

···················································································· 10分

解得a=-b=-2.················································································· 12分

18.

设甲、乙、丙各进行一次射击,击中目标的事件分别为ABC,则ABC三事件是相互独立的. 1分

由题意有:P(A)=0.8,P(B)=0.8,甲、乙、丙三人都击中目标的事件是A·B·C,且P(A·B·C)=0.384.  2分

(Ⅰ)∵P(A·B·C)=P(A)P(B)P(C)=0.384,P(A)=0.8,P(B)=0.8,

P(C)=0.6.······························································································································ 5分

(Ⅱ)设甲、乙、丙三人中至少有两人击中目标的事件为D,则D可分为甲、乙击中,丙未击中,甲、丙击中,乙没有击中和甲没有击中,乙丙击中,以及三人都击中,这三个事件又是互斥的.

P(D)=P(A·B·)+P(A··C)+P(·B·C)+P(A·B·C)

=0.8×0.8×0.4+0.8×0.2×0.6+0.2×0.8×0.6+0.384

=0.832.····················································································································· 9分

(Ⅲ)设恰有一人击中目标的事件为E,则

P(E)=P(··C)+P(··B)+P(A··)

=0.2×0.2×0.6+0.8×0.2×0.4×2

=0.152.······························································································································ 12分

答:(Ⅰ)丙击中目标的概率是0.6;(Ⅱ)至少有2人击中目标的概率是0.832;(Ⅲ)其中恰有一人击中目标的概率是0.152.

19.

(Ⅰ)∵,∴ abAB .

由正弦定理可得,

∴ cosA·sinA=cosB·sinB

∴ sin2A=sin2B .··················································································································· 4分

ABAB是△ABC的内角,∴2A+2B=π ,∴ABC

∴ △ABC是直角三角形.······································································································ 6分

(Ⅱ)由(Ⅰ)可得AC=8,BC=6,

又∵∠PAB=60°,连接PB,则∠APB=90°,∴ APAB=5.

∵∠PAB=60°,sin∠CAB,cos∠CAB

∴sin∠PAC=sin(60°-∠CAB)=··.··································· 10分

S四边形APCBSAPCSABC·AP·PC·sin∠PACAC·BC

=×8×6=-6+24=+18.············································ 12分

20.

(Ⅰ)由已知有,=1,=1,

,∴ k2+1+2k·=2(1+k2-2k·),

∴ 6k·=1+k2 ,∴ ·.········································································· 4分

(Ⅱ)由(Ⅰ)知,·(k),

故 当k>0时,·;当k<0时,·≤-.

又∵ -1=-···=1,

·的取值范围是[-1, -][, 1].···································································· 8分

(Ⅲ)由f (k)=,得(k)=

要使f ( k )=  +在区间(0,2上是减函数,则

上,(k)恒成立 .························································································ 10分

(k)=在(0, 2的最大值是,所以只需 .

,即a的取值范围是.··········································································· 12分

另解(一):

f (k)=,得f (k)=,令f (k)<0.

a+1>0,∴k,且k≠0.

f (k)的减区间是(-, 0),(0,

∴ 要使f (k)在(0, 2)为减函数,则≥2,∴a≥3.

a的取值范围是[3,+∞].

另解(二):

由上可知,f (k)=

设0<k1k2≤2,则

fk1)-fk2)=

.

∵0<k1k2≤2,∴k1k2>0,k1k2<0,k1k2<4,

∴当a≥3时,k1k2a-1<0,∴ f (k1)-f (k2)>0,

∴函数y=f (k)在区间为减函数.

而当0<a<3时,0<<2,f (2)=f ()=,故函数f (x)在(0, 2)上不单调,

a的取值范围是

21.

(Ⅰ)证明:设(x, f (x))是yf (x)图象上的任意一点,

而(x, f (x))关于x=1的对称点为(2-x, f (x)),

f (x)是奇函数,且f (x+2)=-f (x),

f (2-x)=-f (-x)= f (x),

∴ 点(2-x, f (x))也在yf (x)的图象上,

yf (x)的图象关于直线x=1对称.··············································································· 4分

(Ⅱ)∵ f (x)是奇函数,∴f (0)=0 .······························································································· 5分

x(0, 1时,-x[-1, 0,又∵当-1≤x<0时,f (x)=x3 ,∴f (-x)=(-x)3

f (x)=-f (-x)=x3 .

∴ 当x[-1, 1]时,f (x)=x3.

x1, 3]时,x-2-1, 1],∴ f (x-2)=(x-2)3. ······································ 7分

又∵f (x+2)=-f (x),∴f (x-2)=-f (x)=(2-x)3 f (x+4)=-f (x+2)=f (x),

∴ 4是f (x)的周期.················································································································· 9分

又当x3, 5]时,x-4-1,1],∴f (x)=f (x-4)=(x-4)3

f (x)=······························································································ 11分

(Ⅲ)由前可知,f (x)的值域是[-1, 1],∴ f (x) ≤ 1

∴要使 f (x) >a有解,则a<1, ∴ a的取值范围是(-∞, 1).································ 13分

22.

(Ⅰ)由于f (x)在(0, 1)上是增函数,

(x)=a≥0在(0, 1)上恒成立,∴ a≥-恒成立.

而-2<x-2<-1,∴-1<<-<-<1,

a≥1,即a的取值范围是.················································································· 4分

(Ⅱ)先用数学归纳法证明当n时,有0<an<1.

(1)当n=1时,由题设知a1∈(0, 1)命题成立。

(2)假设当nk时命题成立,即0<ak<1。则当nk+1时,ak1=ln(2-ak)+ak

由(Ⅰ)可知,当a=1时,是增函数。

∴0﹤ak1=ln(2-ak)+ak<1,

∴当n=k+1时,命题成立。

∴ 当n时,有0<an<1.····························································································· 8分

an1an=ln(2-an)>0 , ∴ an1annN .······················································· 9分

(Ⅲ)数列{bn}不具有单调性.

g(x)=2ln(2-x)+x

(x)=1-x(1, 2)时,(x)<0,

g(x)=2 ln (2-x)+x在(0, 2)上是减函数.································································ 11分

b1(0, 1),b2=2 ln (2-b1)+b1>1,且b2<2ln2<2

b3=2 ln (2-b3)+b2<2 ln (2-1)+1=1,

b1b2,而b2b3,∴ {bn}不具有单调性.································································ 13分

另解:

b1,则b2=2ln(2-b1)+b1=2 ln =ln (1, 2),

b3=2 ln (2-b2)+b2<1.

由此可知,{bn}不具有单调性.