小学数学奥林匹克试题

2014-5-11 0:37:41 下载本试卷

2001小学数学奥林匹克试题

 

预赛(A)卷

 

=______________。

2.有三个不同的数(都不为0)组成的所有的三位数的和是1332,这样的三位数中最大的是________。

3.四个连续的自然数的倒数之和等于19/20,则这四个自然数两两乘积的和等于________。

4.黑板上写着从1开始的若干个连续自然数,擦去其中的一个后,其余各数的平

均数是

,擦去的数是________。

5.图中的每个小正方形的面积都是2平方厘米,则图中阴影部分的面积是____平方厘米。

6.一梯形面积为1400平方米,高为50米,若两底的米数都是整数且可被8整除,求两底。此问题解的组数是______________。

7.在1000和9999之间由四个不同的数字组成,而且个位数和千位数的差(以大减小)是2,这样的整数共有___________个。

8.有32吨货物,从甲城运往乙城,大卡车的载重量是5吨,小卡车的载重量是3吨,每种大小卡车的耗油量分别是10升和7.2升,将这批货物运完,最少需要耗油_________升。

9.今年小刚年龄的3倍与小芳年龄的5倍相等。10年后小刚的年龄的4倍与小芳年龄的5倍相等,则小刚今年的年龄是_____岁。

10.某校五年级参加数学竞赛的同学约有二百多人,考试成绩是得90-100的恰好占参赛总人数的1/7,得80-89分的占参赛总人数的1/5,得70-79分的恰好占参赛总人数的1/3,那么70分以下的有________人。

11.某人射击8枪,命中4枪,命中4枪中恰好有3枪连在一起的情况的种数是_____。

12.有若干人的年龄的和是4476岁,其中年龄最大的不超过79岁;最小的不低于30岁,而年龄相同的人不超过3个人,则这些人中至少有_____位老年人(年龄不低于60岁的为老年人)。

预赛(B)卷

1.计算:

=_________

2.右式中相同字母代表相同数字,不同字母代表不同数字,则EFCBH代表的五位数是_________.

3.已知2不大于A,A小于B,B不大于7,A和B都是自然数,那么

的最小值是_____

4.A、B两城相距60千米,甲、乙两人都骑自行车从A城同时出发,甲比乙每小时慢4千米,乙到B城当即折返,于距B城12千米处与甲相遇,那么甲的速度是______。

5.如图,OA、OB分别是小半圆的直径,且OA=OB=6厘米,角BOA为直角,阴影部分的面积是_______平方厘米。

6.由数字1、2、3、4、5、6、7、8、9组成一切可能的没有重复数字的四位数,这些四位数之和是_______。

7.甲、乙都是两位数,将甲的十位数与个位数对调得丙,将乙的十位数与个位数对调得丁,丙和丁的乘积等于甲和乙的乘积,而甲乙两数的数字全为偶数,并且数字不能完全相同(如24和42),则甲、乙两数之和最大是______。

8.现有1克、2克、4克、8克、16克的砝码各一个,秤东西时,砝码只能放在天平的一边,可以秤出_______种不同的重量。

10.一百多岁的老寿星,公元

年时年龄为x岁,则此寿星现年_______岁。

11.汽车在南北走向的公路上行驶,由南向北顶风而行每小时50千米,由北向南顺风而行,每小时70千米。两辆汽车同时从同一地点出发相背而行,一辆汽车往北驶去然后返回,另一辆汽车往南驶去然后返回,结果4小时后两车同时回到出发点。如果调头时间不计,在这4小时内两车行驶的方向相同的时间有_____小时。

12.从1、2、3、……49、50这50个数中,取出若干个数使其中任意两个数的和都不能被7整除,最多可取_____个数。

决赛(A)卷

3.根据下表的8*8方格盘中已经填好的左下角4*4个方格中数字显现的规律,找出方格盘中a与b的数值,并计算其和a+b=________

4.十位数abcdefghij,其中不同的字母表示不同的数字。a是1的倍数,两位数ab是2的倍数,三位数abc是3的倍数,四位数abcd是4的倍数……十位数abcdefghij是10的倍数,则这个十位数是___________。

5.九个连续自然数中,最多有_________个质数。

6.某人连续打工24天,共赚得190元(日工资10元,星期六半天工资5元,星期日休息无工资),已知他打工是从1月下旬的某一天开始的,这个月的1日恰好是星期日,这人打工结束的那一天是2月______日。

8.一个半圆形区域的周长等于它的面积(指数值),这个半圆的半径是________。(精确到0.01,圆周率取3.14)

9.如图,正方形ABCD的面积是120平方厘米,E是AB的中点,F是BC的中点,四边形BGHF的面积是________平方厘米。

10.姐弟俩正要从公园门口沿马路向东去某地,他们回家要从公园门口沿马路向西行,他们商量是先回家取车再骑车向东去某地省时间,还是直接从公园门口步行向东去某地省时间。姐姐算了一下:已知骑车与步行的速度比是4:1,从公园门口到达某地距离超过2千米时,回家取车才合算。那么公园门口到他们家的距离有__________米。

11.在0时到12时之间,钟面上的时针与分针成60度角共有_________次。

12.从A市到B市有一条笔直的公路,从A到B共有三段,第一段的长是第三段的长的2倍,甲汽车在第一段公路上以每小时40千米的速度行进,在第二段公路上的速度提高了125%,乙汽车在第三段上以每小时50千米的速度前进,在第二段上把速度提高了80%,甲、乙两汽车分别从A、B两市同时出发,相向而行,1小时20分钟后甲汽车在走了第二段公路的1/3处与从B市迎面而来的乙汽车相遇,那么AB两市相距_______千米。

决赛(B)卷

1.计算:

2.有一个分数约成最简分数是5/11,约分前分子分母的和等于48,约分前的分数是_________。

3.若今天是星期六,从今天起

天后的那一天是星期________。

4.若2836,4582,5164,6522四个自然数都被同一个自然数相除,所得余数相同且为两位数,除数和余数的和为 ___________ 。

5.甲、乙、丙、丁四人去买电视机,甲带的钱是另外三人所带钱总数的一半,乙带的钱是另外三人所带 的钱总数的1/3,丙所带的钱是另外三人所带总钱数的1/4,丁带910元,四人所带的总钱数是_________ 元。

 6.两人从甲地到乙地同时出发,一人用匀速3小时走完全程,另一人用匀速4小时走完全程,经过_______小时,其中一人所剩路程的长是另一人所剩路程的长的2倍。

7.如图,直角梯形ABCD,四边形AEGF、MBKN都是正方形,且AE=MB,EP=KC=9,DF=PM=4,则三角形DPC的面积为_________。

  8.今有桃95个,分给甲、乙两班学生吃,甲班分到的桃有2/9是坏的,其它是好的,乙 班分到的桃有3/16是坏的,其它是好的,甲、乙两班分到的好桃共有_____________个。

9.如图ABCD是平行四边形,AD=8cm,AB=10cm,角DAB=30度,高CH=4cm,弧BE、DF分别以AB、CD为半径,弧DM、BN分别以AD、CB为半径,阴影部分的面积为 ___________。

10.假设某星球的一天只有6小时,每小时36分钟,那么3点18分时,时针和分针所形成的锐角是_____度。

11.甲、乙、丙三人同时从A地出发去距A地100千米的B地,甲与丙以25千米/时的速度乘车行进,而乙却以5千米/时的速度步行,过了一段时间后,丙下车改以5千米/时的速度步行,而甲驾车以原速折回,将乙载上而前往B地,这样甲、乙、丙三人同时到达B地,此旅程共用时数为_________小时。

12.已知A、B、C、D、E、F、G、H、I、K代表十个互不相同的大于0的自然数,要使下列等式成立,A最小是_____。B+C=A D+E=B  E+F=C  G+H=D  H+I=E  I+K=F